NOSE CREEK HISTORICAL SURFACE WATER QUALITY DATA

 ~ 1

Prepared for:

CITY OF CALGARY CITY OF AIRDRIE MD OF ROCKY VIEW

Prepared by:

P.M. Cross MADAWASKA CONSULTING

April 1999

EXECUTIVE SUMMARY

The City of Calgary, City of Airdrie and MD of Rocky View commissioned a study of historical surface water quality in Nose Creek. Water quality data were compiled from several sources and data gaps were identified. Discussion of a program to address these deficiencies was provided. Potential land use influences from municipal, industrial and agricultural operations were listed. Statistics were used to determine whether there were any changes in water quality over distance (longitudinal) along the creek or over time (temporal) at the City Limits and the mouth of the creek. Water quality data were compared to Canadian Water Quality Guidelines for drinking water, livestock, irrigation, aquatic life and recreation uses to determine whether there were any limitations on water use.

TRENDS

The seasonal trends in the data are related to the different sources and volume of flow and the effect of the biological community within the water column. Dissolved solids (conductivity, major ions) are often higher in winter when groundwater contributes a larger portion of the flow volume. Higher flows generally carry more sediments and the water quality reflects the chemistry of the particles. The higher winter values may include water entering the creek during chinook melting. The biological community is active through the summer affecting pH, dissolved oxygen and nutrients. Bacterial contamination is higher in summer when natural die-off may be less rapid and livestock and wildlife are more active.

Data from 1995 to 1998 indicated significant trends for seven parameters for Nose Creek at the City Limits. Chloride, nitrate + nitrite, fecal coliform bacteria and fecal streptococci are decreasing, and total alkalinity, total suspended solids and ammonia are increasing. Because of the data limitations, these trends should be considered indicators only. There were no significant trends for Nose Creek at the Mouth, although data were not ideal for this analysis.

The longitudinal trend analysis indicates that the major issues in the Nose Creek watershed are suspended solids, bacteria, nutrients, organic matter and a few metals. Airdrie is contributing suspended solids, bacteria and zinc. Upstream water quality is better in West Nose Creek than in Nose Creek in terms of suspended solids, nutrients, organic matter, chromium and zinc. However concentration increases along West Nose Creek included suspended solids, nutrients, organic matter and bacteria. Before the two creeks join, their differences are apparent. Nose Creek has generally higher concentrations of phosphorus and organic carbon, while West Nose Creek has higher concentrations of suspended solids and bacteria. Apart from reflecting the water quality at the upstream sites, within the City of Calgary in the downstream reach there were increases in biochemical oxygen demand, nitrogen, bacteria and lead.

WATER QUALITY GUIDELINES

Raw water quality was not acceptable for **drinking water** without some treatment. The major violation of drinking water guidelines relates to fecal coliform bacteria, however, bacteria are removed with the appropriate treatment and no surface water in Alberta should be consumed

without treatment. Other drinking water quality violations were generally related to aesthetic considerations, resulting in unpalatable water or staining of laundry and plumbing fixtures.

Water quality for **irrigation** was unacceptable for sensitive crops and raw produce. Use of water exceeding the guidelines for salinity related parameters (total dissolved solids, conductivity) may result in some loss of production for sensitive crops such as raspberries, strawberries, carrots and beans. Water with fecal coliform bacteria concentrations violating the irrigation guidelines would raise concerns when used on raw produce.

Water quality for livestock watering was generally acceptable.

Violations of the guidelines for the protection of **freshwater aquatic life** (dissolved oxygen, ammonia, metals) may have an effect on several species, causing stress or restricting their growth and survival.

Violations of the **recreational** guideline for fecal coliform bacteria indicated increased health risk for recreational users including respiratory, gastrointestinal, eye, ear, skin and allergy illnesses.

The high frequency of violations of the Alberta Surface Water Quality Guidelines for total phosphorus and total nitrogen indicated unacceptably high levels. The generally nutrient rich water in Nose Creek can support a substantial plant community. The bacteria concentrations will limit direct contact recreation or vegetable crop irrigation.

ISSUES

The water quality issues in the Nose Creek watershed, as identified by the review of historical data, are suspended solids, bacteria, nutrients, organic matter, metals, salinity and pesticides.

TABLE OF CONTENTS

951

EXEC	CUTIVE	SUMMARY i
1.0	INTRO	DDUCTION
2.0		SOURCES AND COMPILATION
	2.1	SURFACE WATER QUALITY
	2.2	POTENTIAL LAND USE INFLUENCES
	2.3	FLOW MONITORING
	2.4	DATA GAPS
	2.5	SAMPLING PROGRAM DESIGN 7
3.0	SURF	ACE WATER QUALITY DATA TRENDS
	3.1	BACKGROUND
	3.2	METHODS 10
	3.3	TEMPORAL (OVER TIME) TRENDS 11
		3.3.1 Monthly Variability 11
		3.3.2 Annual Variability 12
		3.3.3 Trend Analysis 13
	3.4	LONGITUDINAL (OVER DISTANCE) TRENDS 14
	3.5	OTHER ISSUES
		3.5.1 Storm Events
		3.5.2 Pesticides
		3.5.3 Total Dissolved Solids
4.0	WATI	ER QUALITY GUIDELINES 19
	4.1	METHODS
	4.2	RESULTS
5.0	WATI	ER QUALITY ISSUES
PRO	FESSIO	NAL RESPONSIBILITY
REF	ERENCI	ES

LIST OF TABLES

 $a \cdot 1$

Table 1	Data Search Contacts
Table 2	Available Surface Water Quality Data 4
Table 3	Summary Statistics for Each Location 27
Table 4	Municipal and Industrial Information
Table 5	Agricultural Operations Information
Table 6	Median Analysis Between Decades at the Mouth 14
Table 7	Temporal Trend Analysis 15
Table 8	Median Testing of Sites 16
Table 9	Data Exceeding Guideline Values 19
Table B	1 Selected Canadian Water Quality Guidelines B1
Table B	2 Alberta Ambient Surface Water Quality Interim Guidelines

LIST OF FIGURES

Figure 1	Study Area	. 2
Figure 2	Monthly Variability for Nose Creek at the City Limits	.36
Figure 3	Annual Variability for Nose Creek at the Mouth and City Limits 37-	44
Figure 4	Trend Graphs for Nose Creek at the Mouth 45-	-48
Figure 5	Comparison of 1980s Data from all Locations	.57
Figure 6	Data from 1980s showing Storm Event and Sewer Data	65
Box and	Whisker Plot Legend	29

LIST OF APPENDICES

Appendix A	Historical Data
Appendix B	Water Quality Guidelines

1.0 INTRODUCTION

The City of Calgary, City of Airdrie and Municipal District of Rocky View have committed to undertake a cooperative approach in addressing the water quality issues in the Nose Creek watershed. As a first step in this water quality management, they commissioned a study of historical surface water quality in the watershed. The specific Terms of Reference are as follows:

- 1. Assemble historical data pertaining to surface water quality within the Nose Creek watershed.
- 2. Outline and report on longitudinal and temporal trends in water quality indicators.
- 3. Determine if there has been a statistically significant change in water quality.
- 4. Summarize and report on what the data indicates in a user friendly graphical format understandable to the general public.
- 5. Identify data gaps and identify a sampling design to address these deficiencies.

Nose Creek is a tributary to the Bow River, arising just north of Crossfield and flowing into the Bow River just downstream of the Calgary Zoo (Figure 1). The eastern watershed boundary is just to the east of Deerfoot Trail and Highway 2. West Nose Creek is a major tributary which extends the western watershed boundary to about Bearspaw Road (Range Road 30).

Water quality in this watershed is influenced by urban and rural land use practices. Nose Creek flows into the Bow River upstream of an important fishery in the Bow River and water withdrawals for the Western Irrigation District at the Western Headworks canal.

This report documents the surface water quality within the context of the Terms of Reference. Section 2 discusses the data sources and compilation for both surface water quality data and flow monitoring data. This section also identifies potential land use influences, identifies data gaps, and discusses a program to address the data deficiencies. Section 3 presents the graphical and statistical analysis of temporal and longitudinal trends. Section 4 compares the surface water quality data with water quality guidelines. Section 5 discusses the results in terms of specific water quality issues.

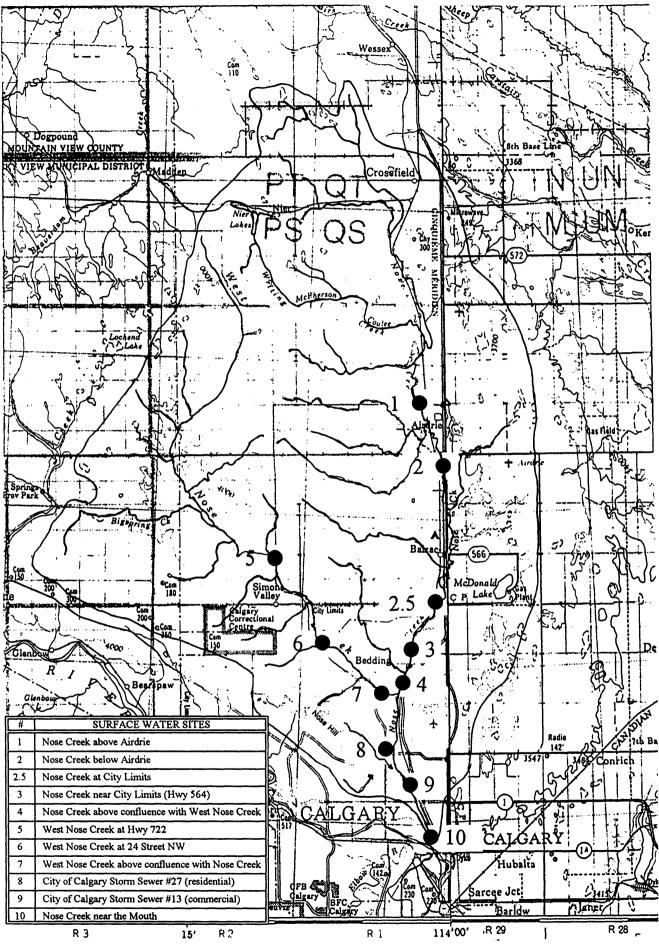


Figure 1 Study Area

MADAWASKA CONSULTING

2.0 DATA SOURCES AND COMPILATION

Data were solicited from the sources listed in Table 1.

AGENCY	CONTACT	COMMENTS	
Alberta Environmental Protection (AEP)	Al Sosiak, Water Sciences Branch (WSB)	AEP data	
	Anne Marie Anderson, WSB	CAESA study of West Nose Creek	
	Doreen Le Clair, WSB	Water Data System data base	
	Chris Robertshaw, Water Monitoring Branch (WMB)	AEP files	
	Craig Reich, Municipal Approvals Branch	Municipal and industrial discharges	
	Kent Berg, Water Administration Branch	Water licences	
	Hugh Howe, WMB	Discharge measurements	
City of Calgary	Yin Deong, Sewer Division	City data	
City of Airdrie	Mark Locking, Engineering and Public Works	City data	
Environment Canada	Tim Davies, Water Survey Division	Discharge measurements	

2.1 SURFACE WATER QUALITY

Data provided by Alberta Environmental Protection (AEP) from their Water Data System data base comprise the bulk of the available information throughout the watershed. The City of Calgary provided data at one location over four years. Additional data were provided by the City of Airdrie. Table 2 outlines the surface water quality data which were available for this study. Site locations are indicated on Figure 1.

Alberta Environment (Schonekess 1981) carried out a water quality study from April to September 1980 as part of a comprehensive water management study for Nose Creek and West Nose Creek undertaken by Planning Division. The water quality study included a program of regular weekly sampling and storm event sampling at seven creek sites and two storm sewer outfall sites.

Other samples have been collected at the mouth of Nose Creek from 1981 to 1996 principally as a part of studies of the Bow River. From 1980 to 1982, Alberta Environmental Protection (AEP) collected data from Nose Creek at the mouth as part of a major study to characterize the limnology of the rivers in the Bow River basin, including tributary loading (Cross, Hamilton and Charlton 1986). Subsequent data were collected for a water quality overview study in the Bow River in 1985, and an investigation of the effects of a storm event along the Western Headworks canal in 1993 (Sosiak 1994). Synoptic surveys of the Bow River in 1994, 1995 and 1996 (Sosiak 1996) included sampling at the mouth of Nose Creek.

SITE # ON FIGURE 1	SURFACE WATER SITES	# OF SAMPLE DATES	YEAR
1	Nose Creek above Airdrie AB05BH0300	23	1980
	Nose Creek around Airdrie City of Airdrie	5	1998
2	Nose Creek below Airdrie AB05BH0310	26	1980
2.5	Nose Creek at City Limits City of Calgary	14 19 23 20	1995 1996 1997 1998
3	Nose Creek near City Limits (Hwy 564) AB05BH0320	33	1980
4	Nose Creek above confluence with West Nose Creek AB05BH0330	40	1980
5	West Nose Creek at Hwy 722 AB05BH0340	9	1995
6	West Nose Creek at 24 Street NW AB05BH0350	34	1980
7	West Nose Creek above confluence with Nose Creek AB05BH0360	41	1980
8	City of Calgary Storm Sewer #27 (residential) AB05BH0250	103	1980
9	City of Calgary Storm Sewer #13 (commercial) AB05BH0260	32	1980
10	Nose Creek near the Mouth AB05BH0370, 0380, 0390	1 85 1 1 1 1 1 1 6 3 2 2	1975 1980 1981 1982 1985 1986 1993 1994 1995 1996

Table 2 Available Surface Water Quality Data

West Nose Creek (Beddington Creek) was sampled in 1995 near the headwaters as a part of the CAESA (Canada Alberta Environmentally Sustainable Agriculture) program. The site was chosen because the 1991 census indicated that it was an area of high intensity agriculture, and

landscape maps indicated that it had potential for high runoff (A.M. Anderson, personal communication). The site was dropped because of the difficulty in obtaining acceptable flow measurements and because of the recent urbanization of the basin.

The City of Calgary has been collecting samples since 1995 at Nose Creek at the City Limits. These data will be used for regulatory purposes to help determine the contribution of Calgary to loadings from Nose Creek into the Bow River.

The available data at each site (n > 10) were compiled and statistically summarized using Statistix for Windows 2.0 (Analytical Software 1992) in terms of number of samples, mean, standard deviation, minimum, median and maximum (Table 3, page 27-28). The data are given in Appendix A of the report.

Three additional sources of water quality information were provided. The City of Airdrie sampled at five sites at or near Airdrie in the fall of 1998. These data were used by the City to evaluate stormwater impacts. The sources of total dissolved solids in Nose Creek were investigated using chemical and stable isotope analyses (Grasby et al 1997). Pesticides were sampled at two sites in the watershed as a part of a study in the Western Headworks canal (Byrtus 1999).

2.2 POTENTIAL LAND USE INFLUENCES

Potential land use influences on water quality were identified from regulatory records and personal communications. AEP, Municipal Approvals Branch provided details of the municipal and industrial effluent Approvals within the Nose Creek watershed for three municipalities and three industries (Table 4). There are numerous storm sewers entering both Nose Creek and West Nose Creek within the City of Airdrie and the City of Calgary.

MUNICIPALITY/INDUSTRY	COMMENTS
Town of Crossfield	wastewater and stormwater
City of Airdrie	stormwater
City of Calgary	stormwater
Acanthus Resources Ltd. (6-15-28-2-W5) compressor station	surface runoff
Procor Sulphur Services Inc. (NE14-28-1-W5)	surface runoff
Amoco Canada Petroleum (NE14-28-1-W5) sour gas plant	surface runoff

 Table 4 Municipal and Industrial Information

There are no formal records for farming operations comparable to those available for municipalities and industries. Table 5 lists operations which were identified by the agriculture field personnel at MD of Rocky View. The list is not exhaustive and does not include cowcalf operations which use the lands along most of Nose Creek and its tributaries for grazing. It should be emphasized that the size of the farming operation does not necessarily correlate with the potential for contamination of surface waters. Operation siting and management practices are important factors in determining this potential.

 $\eta \leq 1$

RIVER BASIN	OPERATION	LOCATION
Nose Creek	Feedlot	W12-26-1-W5
		NE9-26-1-W5
		SE17-27-1-W5
		NE22-27-1-W5
		NE32-28-1-W5
		SW26-28-2-W5
		SE25-28-2-W5
	Feedlot, hog	NW24-28-2-W5
	Hog	SE5-27-1-W5
		NW4-27-1-W5
		SE28-27-1-W5
	Horse	NE36-26-2-W5
		NE8-27-1-W5
	Seed Plant	SE13-26-1-W5
	Alta Genetics	\$24-26-1-W5
	Greenhouse	NE12-26-1-W5
		NE24-27-2-W5
	Mushroom plant	SE14-28-1-W5
West Nose Creek	Feedlot	SE2-27-2-W5
		SE4-27-2-W5
		NW9-27-2-W5
		SW20-27-2-W5
		SE28-27-2-W5
	Acreages with livestock	E12-26-2-W5
		NW12-26-2-W5
		NE27-27-2-W5
		SE34-27-2-W5
		W3-28-2-W5
	Greenhouse	SE3-28-2-W5

Table 5 Agricultural Operations Information

2.3 FLOW MONITORING

Flow has been monitored within the Nose Creek watershed at two locations since 1911. Monitoring at both sites was seasonal from March to October. Nose Creek at Calgary was located at about Beddington Trail draining an area of 893 km² including West Nose Creek. Records are available from 1911 to 1919 and from 1972 to 1986. Nose Creek at the Mouth was located at about Centre Avenue draining 986 km² with records from 1980 to 1989.

2.4 DATA GAPS

The analysis of changes in water quality through the Nose Creek watershed is limited to one year of data collected in 1980. The sampling locations were chosen well and the parameter list was extensive. Sampling sites were located to represent changes through the watershed above and below Airdrie as well as at the boundary between rural and urban influences along Nose Creek and West Nose Creek. Since the time of the 1980 study, the limits of the City of Calgary have been extended and land use has changed with the continuing urbanization of the watershed. A more current data set would help to identify the situation now.

Temporal variability is fairly well represented in the data base over the short term (seasonal), however there were insufficient data to assess longer term trends vigorously. This is not unusual when the data were collected for other purposes.

Seasonal variability in the water quality was well represented in the data base in terms of months of sampling from April to October. In general winter data were less available, which may reflect the low flow during this season. In addition, storm generated surface runoff was addressed.

The site on Nose Creek at the City Limits provides some continuity of information over four years to allow comparisons of annual variability and an indication of short term temporal trends. Although the site at the mouth has data from several years, there is limited ability to investigate the variability from year to year. This site does however provide some continuity of information from 1975 to 1996.

Flow is not currently being monitored. As a result there is no ability to compare loadings from different portions of the watershed. The comparison of concentration change does provide information about sources within a creek reach.

On a technical note, water quality interpretation is improved when analyses use consistent detection limits. Records should be clear and consistent in reporting of values below the detection limit as < the specific detection limit rather than ND (often used to report no data).

2.5 SAMPLING PROGRAM DESIGN

The design of a monitoring program depends on the questions which are being asked (e.g. long term changes at a specific location, impacts of specific activities, relative contribution /

loading within the watershed). In the case of Nose Creek, this is not yet entirely clear from a coordinated perspective. In 1999, a monitoring program has been started which depends on the coordination of the partners in their existing monitoring efforts. The parameter lists have been coordinated and there is a commitment to sharing results.

The City of Calgary, already sampling at Nose Creek at the City Limits has added two additional sites at West Nose Creek at the City Limits and at the Mouth. A component of their effort is directed to the need to meet regulatory requirements in terms of loading. Sampling is approximately twice a month throughout the year.

Alberta Environmental Protection is conducting a study upstream and downstream of Airdrie. Sites at Highway 567 on the north and Big Springs Road on the south were recommended at the Technical Meeting. AEP will also undertake to provide stage readings (as an indication of flow) at the old Water Survey site, Nose Creek at Calgary.

The coordinated program addresses some of the data gaps identified in Section 2.4. A current data base is being collected to compare with the earlier results. The sampling at the City Limits and the Mouth will contribute to the longer term data base required to assess long term trends. Some flow information can be derived from the staff gauge readings.

While data are collected this year, and in a time frame to meet budgetary considerations, the partners need to decide the focus and direction of their water quality efforts in the Nose Creek watershed. This will determine the monitoring needs in the future. Following are some criteria which should be considered in the design of a water quality monitoring program to complement the overall direction of water quality management in the watershed.

Sampling locations should consider major influences on water quality. This has been focussed on urban boundaries in the past. A consideration of differences in land use will also be useful as the land use surrounding the urban centres changes.

Parameters to be monitored will depend on the issues identified, considering both rural and urban influences as well as water resource users. Suggested parameters include sediments, bacteria, nutrients, total dissolved solids, pesticides and metals.

Frequency of sampling should consider the influence of base flow and runoff during snowmelt and rainfall events. Snowmelt and rainfall runoff will depend on local climatic conditions during the sampling program and cannot be pre-programmed. Event flow sampling requires the installation of special equipment.

Other information which will provide important data for water quality management are an assessment of riparian health, contamination sources, land use, landowner management practices and drainage characteristics. Flow measurements taken in conjunction with water quality sampling will permit some analysis of the relationship between discharge and the parameters measured, as well as calculations of loading. An inventory of available beneficial management practices for implementation in the watershed will also assist the process.

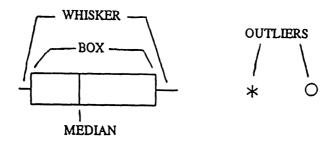
3.0 SURFACE WATER QUALITY DATA TRENDS

Figures in this section are placed together at the back of the report after the references.

3.1 BACKGROUND

A study of water quality in the watershed in 1980 (Schonekess 1981) reached the following conclusions:

- Nose Hill seems to affect the meteorology within the Calgary area resulting in erratic movement of storms.
- Concentrations of the various chemical parameters at the rural sites are generally lower than at the urban sites for dry-weather or weekly sampling.
- Concentrations for the various chemical parameters during storm periods generally increase greatly at the urban sites and only slightly at rural sites. In some cases concentrations at the rural sites decreased indicating a dilution effect because of slightly elevated flows.
- Storm discharges from the Town of Airdrie have little adverse effect on water quality at the Calgary city limits.
- Agricultural run-off above the City of Calgary on West Nose Creek and Nose Creek has little effect on water quality when compared to storm sewer discharges within the urban areas.
- Run-off from the Beddington Heights area, which is in various stages of construction, has a marked effect on the quality of water in West Nose Creek considering that only a few storm sewers direct run-off water to it.
- Concentration of measured parameters of dry-weather discharges are generally higher than concentrations found in the creek. The difference becomes greater during storm events.
- The concentration of chemical parameters in storm sewer waters are generally higher from a primarily residential area than from a commercial or business area. This holds for both dry-weather and storm conditions.
- Storm sewer discharge concentrations during storm events are generally highest during the initial flush, however, there may be exceptions where the maximum concentration for some parameters can occur after the flush.
- Flows in Nose Creek at the Calgary city limits were low but somewhat higher than below Airdrie.
- Flows in West Nose when compared to Nose Creek remained fairly high and steady throughout the sampling period.
- During storm events, flows in the creek at the rural sites increase only slightly whereas flows in the urban areas, increase from 10 to 60 times normal dry-weather flow.
- Water quality of Nose Creek and West Nose Creek is unsuitable for use as a public water supply.
- Urban areas are generally unsuitable for direct contact recreation, however, secondary contact recreation could be allowed during certain times of the year. Rural sites are


generally acceptable for both types of recreation but microbial densities will limit direct contact recreation during certain times.

• The water in Nose Creek and West Nose Creek is generally acceptable for irrigation as long as the water is not used to irrigate crops consumed directly by man.

These conclusions from the 1980 study represent a starting point for this study. The subsequent statistical testing was used to carry the analysis further and include more recent data.

3.2 METHODS

Data were graphically summarized in box and whisker plots using Statistix to illustrate the variability of the selected parameters. Each plot is composed of one box and two whiskers as shown below.

The box encloses the middle half of the data (the data between the 25th and 75th percentile). The box is bisected by a line at the value for the median (one half of the data are greater and one half of the data are less than the median). The lines at both ends of the box are called whiskers, and they indicate the range of "typical" data values. Extreme values are displayed as "*" for possible outliers and "o" for probable outliers. Outliers are values which do not "fit" statistically into the distribution of the "typical" data values. For presentation purposes, several outliers were excluded from the box and whisker plots. The number or outliers or values of these outliers are indicated on each plot.

Relevant water quality guidelines are indicated on each plot by a horizontal line at the guideline value. Data values above the horizontal line are unacceptable and data values below the horizontal line are acceptable in relation to the guideline. The relationship of the box and whisker plot to the guideline value indicates whether the data distribution is greater than or less than the guideline value. For example, if the median value is above the guideline, at least half of the data values measured at that site violate the guideline value. Discussion of water quality data in relation to the water quality guidelines is presented in Section 4.0.

In several cases (e.g. total suspended solids, bacteria), the variability in the data was so large that regular box and whisker plots were not always useful for visual inspection. In these cases, the data were transformed to the logarithm of the value and a second box and whisker plot was produced.

Statistical analyses available in Statistix and WQStat Plus (Intelligent Decision Technologies 1998) were used where appropriate. Concentrations listed as less than the detection were considered to be ¹/₂ the detection value. Detection limits used by the City of Calgary varied for nitrate and ammonia, and non-detects were often listed as ND. Based on the available information when detection limits were specified, ND was conservatively assumed to be 0.5 for ammonia and 1.0 for nitrate. In general, outlier values were included in all analyses to maintain the integrity of the data base. For analyses requiring seasonal corrections, seasons were defined from March to April, May to July, August to October, and November to February.

Data and trends were assessed graphically by inspection of time series (line graphs) and box and whisker plots. The Mann-Whitney test and Kruskal-Wallis test were used to compare the medians between sites. The Mann-Whitney test calculates the significance of the difference between the medians, and the Kruskal-Wallis test is a non-parametric ANOVA (analysis of variance) which determines if there is significant variation between the medians. The Seasonal Kendall test was used to evaluate the significance of apparent changes in concentration over time.

Testing for temporal variability was focussed on Nose Creek at the mouth and Nose Creek at the City Limits. Temporal trends were investigated in terms of monthly and annual variability. The full data set at each site was tested statistically with trend analysis. Longitudinal trends were investigated statistically in the Nose Creek watershed using data collected in 1980.

3.3 TEMPORAL (OVER TIME) TRENDS

Several aspects of the data base were reviewed to consider differences which might bias plots and analyses. Surface water quality generally varies during a year and from year to year. Therefore the time of year and specific years of data collection can affect data comparisons. The effect of seasonal variability is overcome to a degree by deseasonalizing data (adjusting for mean seasonal differences) prior to statistical analysis. However, box and whisker plots merely represent the data available.

Water quality characteristics during storm events and non-storm sampling can be quite different and may bias any statistical analyses. Therefore only data collected at the sites during 'routine' weekly sampling were included to reduce this bias.

3.3.1 Monthly Variability

Samples collected at the City Limits from 1995 to 1998 provide the best data for comparing monthly variability. Information from January to March were combined to provide enough data for the box and whisker plots. Results for selected parameters are illustrated in Figure 2 (pages 30-36).

The monthly trend for conductivity was representative of the pattern for the major ions. Concentrations were generally higher from December to March and lowest in April. Several of the major ions also showed slightly increasing concentrations through October and November. This same pattern was reflected in the total alkalinity data, while phenolphthalein alkalinity concentrations were higher from May to October (when pH is higher) than from November to April. Data for pH were lowest from December to March and higher from May to October with intermediate values in April and November. Total suspended solids tended to be higher from December to March.

Biochemical oxygen demand was highest from January to March. Concentrations decreased from April to July and increased in December. Dissolved oxygen is strongly influenced by water temperature (solubility) and the time of day of the sampling (photosynthesis and respiration of the plant community), but median concentrations tended to be lowest in July and December to March, and highest in April and October.

Total phosphorus concentrations generally decreased from highest values in January to March to lowest concentrations in October. Nitrate + nitrite concentrations were generally around the analytical detention used by the City except for some higher concentrations measured from December to March. Ammonia concentrations followed a similar pattern, though the transition to higher concentrations was also noted in November and April.

Total coliform bacteria concentrations increased from April to September and returned to lower values for the remainder of the year. The pattern for fecal coliform bacteria, fecal streptococci and E. *coli* showed that concentrations were generally higher from May to August.

Most of the concentrations of metals did not show any strong monthly pattern. Several of the metals, including aluminum and iron were slightly higher from December to March, and zinc concentrations were higher from June to October.

The seasonal trends in the data are related to the different sources and volume of flow and the effect of the biological community within the water column. Dissolved solids (conductivity, major ions) are often higher in winter when groundwater contributes a larger portion of the flow volume. Higher flows generally carry more sediments and the water quality reflects the chemistry of the particles. The higher winter values may include water entering the creek during chinook melting. The biological community is active through the summer affecting pH, dissolved oxygen and nutrients. Bacterial contamination is higher in summer when natural die-off may be less rapid, and livestock and wildlife are more active.

3.3.2 Annual Variability

It is a normal characteristic of water quality data to vary from year to year. Annual variability is illustrated for Nose Creek in Figure 3 (pages 37-44). Data collected at the City Limits (1995, 1996, 1997, 1998) provided the best comparison of annual variability, because there is a balance of seasonal sampling except in 1995 when sampling only started in June. Data

collected in 1980 at Nose Creek at Hwy 564 (older City Limits), although not directly comparable with the current site, were included for comparison. Data collected at the Mouth (1980, 1981-86, 1993-96) provided limited scope for year to year comparisons, requiring the combination of years. Comparisons were made regardless of month of data collection, however storm-related data as determined for 1980 and in 1993 were not included, to try to remove some bias between years.

The City data showed that although there is variability from year to year, for the most part the concentrations at Nose Creek at the City Limits were fairly similar for the four years of data. Some minor differences were noted for total suspended solids which were lower in 1995 (no data from January to May), several major ions which ranged to higher concentrations more frequently in 1998, nitrate + nitrite which was lower in 1998, and fecal coliform bacteria and fecal streptococci which were lower in 1997 and 1998 than in 1995 and 1996. Several metals (copper, zinc, cadmium, nickel) were higher in 1997 than in the other year.

When comparisons were available between the current City Limits and the 1980 City Limits site, concentrations were generally in the same range. The exceptions were pH, ammonia, nitrate + nitrite and lead, with a lower median concentration in 1980. In the case of ammonia and nitrate + nitrite, the difference can be attributed to the difference in detection limits used. The detection limit used by the City in 1995 to 1998 was variable and not as low as that used in 1980. (The analyses use one half the detection limit value for samples listed as ND or less than detection.)

With a few exceptions, there was relatively little difference between the three groupings of data at the Mouth. In 1981-86, the median concentration was lower for total suspended solids, copper, aluminum and iron, and higher for dissolved oxygen. In 1993-96, total nitrogen was higher, and total coliform bacteria and lead were lower.

3.3.3 Trend Analysis

Inspection of box and whisker plots provides a visual analysis of trends, however statistical testing provides a more rigorous analysis. Deficiencies in the data base as discussed in Section 2.4, however limit the strength of the conclusions which can be drawn from the statistics.

Median analysis was used to compare data from the 1980s with data from the 1990s for Nose Creek at the Mouth (Table 6). This analysis indicates that in the 1990s concentrations were higher for turbidity, total nitrogen, nitrate + nitrite and fecal coliform bacteria and lower for lead.

Temporal trend analysis statistics for the period of record are summarized in Table 7. Data indicated significant trends for seven parameters, all at the City Limits. Chloride, nitrate + nitrite, fecal coliform bacteria and fecal streptococci are decreasing, and total alkalinity, total suspended solids and ammonia (based on trend direction from Mann-Kendall test, despite slope = 0 on graph) are increasing. Because of the data limitations, these trends should be considered indicators only. The significant trends are shown in Figure 4 (pages 45-48).

PARAMETER	80s vs 90s	PARAMETER	80s vs 90s
Conductivity	NS	Total Phosphorus	NS
Total Dissolved Solids	NS	Dissolved Phosphorus	NS
Calcium	NS	Total Nitrogen	increasing
Magnesium	NS	Nitrate + Nitrite	increasing
Sodium	NS	Ammonia	NS
Potassium	NS	Total Kjeldahl Nitrogen	NS
Bicarbonate	NS	Dissolved Organic Carbon	NS
Sulphate	NS	Biochemical Oxygen Demand	NS
Chloride	NS	Total Coliform Bacteria	NS
Hardness	NS	Fecal Coliform Bacteria	increasing
pH	NS	Lead	decreasing
Total Alkalinity	NS	Zinc	NS
Total Suspended Solids	NS	Chromium	NS
Turbidity	increasing	Copper	NS

Table 6 Median Analysis Between Decades at the Mouth

Mann-Whitney: NS - not significant; When test is significant (p < 0.05), the direction of change is indicated.

Although the comparison of 1980s vs 1990s data at the mouth using median analysis indicated several trends, the more stringent temporal trend analysis indicated no significant trends. This result suggests that seasonal differences in the two data sets used in the median analysis testing have caused the apparent trends.

3.4 LONGITUDINAL (OVER DISTANCE) TRENDS

Data from 1980 provided the best information for comparing sites through the watershed. The 'routine' data set from seven sites in the Nose Creek watershed were compared using box and whisker plots (Figure 5, pages 49-57). This presentation provides a visual site comparison which was tested statistically (Table 8). At two sites, samples were not collected through to the end of September. In these cases, data from the station being compared statistically were also truncated.

Changes from upstream to downstream of Airdrie (Table 8, column 1) include increases in total suspended solids, total coliform bacteria, fecal coliform bacteria and zinc, and decreases in total dissolved solids, total nitrogen and total organic carbon.

When the upstream (rural) components of Nose Creek and West Nose Creek are compared (Table 8, column 6), it is apparent that the water quality in West Nose Creek is better than in Nose Creek. Concentrations of nutrients (except nitrate + nitrite), total suspended solids,

PARAMETER	CITY LIMITS	MOUTH
Conductivity	NS	
Total Dissolved Solids		ID
Calcium	NS	
Magnesium	NS	
Sodium	NS	
Potassium	NS	
Sulphate	NS	
Chloride	decreasing	
рН	NS	NS
Total Alkalinity	increasing	
Total Suspended Solids	increasing	NS
Total Phosphorus	NS	NS
Dissolved Phosphorus		NS
Total Nitrogen		NS
Nitrate + Nitrite	decreasing*	NS
Ammonia	increasing*	NS
Biochemical Oxygen Demand	NS	NS
Total Coliform Bacteria	NS	
Fecal Coliform Bacteria	decreasing	NS
Fecal Streptococci	decreasing	
E. coli	NS	
Chromium	NS	ID
Copper	NS	ID
Lead	NS	ID
Zinc	NS	ID

Table 7 Temporal Trend Analysis

Seasonal Kendall test: NS - not significant; ID - insufficient data in one season; When test is significant (p < 0.05), trend direction is indicated.

includes detection limit assumptions.

total organic carbon, biochemical oxygen demand, chromium and zinc were higher and dissolved oxygen was lower in Nose Creek.

The changes in water quality from rural to urban are illustrated in Table 8 columns 2 (Nose Creek) and 3 (West Nose Creek). More parameters showed significant changes along West Nose Creek than along Nose Creek, in part because of the better water quality in the upstream reach of West Nose Creek. In Nose Creek concentrations of total suspended solids,

PARAMETER	SITES SIGNIFICANTLY DIFFERENT						
	us Airdrie vs ds Airdrie	Nose 564 vs Nose us West	West 24 vs West us Nose	West us Nose vs Nose Mouth	Nose us West vs Nose Mouth	Nose 564 vs West 24	Nose us West vs West us Nose
	Effect of Airdrie		n of Rural rban	Ur	ban	Creek Co	omparison
Total Phosphorus			🖌 inc			v >	v >
Dissolved Phosphorus			🖌 inc		✔ dec	v >	v >
Total Nitrogen	🖌 dec		🖌 inc	✓ inc	🖌 inc	v >	
Nitrate + Nitrite			🖌 inc	🖌 inc	🖌 inc		✓ <
Ammonia			🖌 inc		🖌 inc	v >	
Total Organic Carbon	🖌 dec		🖌 inc		🗸 dec	v >	v >
pH				✔ dec			
Dissolved Oxygen	🖌 inc	🖌 inc				v <	✓ <
Biochemical Oxygen Demand		🗸 dec	🖌 inc	🖌 inc	🖌 inc	v >	
Total Dissolved Solids	🖌 dec						
Total Suspended Solids	🖌 inc	🖌 dec	🖌 inc		✓ inc	v >	✓ <
Total Coliform Bacteria	🖌 inc		🖌 inc		✓ inc		v <
Fecal Coliform Bacteria	🖌 inc	🖌 dec	🖌 inc		✓ inc		v <
Fecal Streptococci			✓ inc		✓ inc		v <
Chromium						✓ >	
Copper						v >	
Lead				✓ inc	✓ inc		
Zinc	🖌 inc				✓ inc		

Table 8 Median Testing of Sites

Kruskal-Wallis: \checkmark significant at 5% or "difference" greater than "contrast"; trend is indicated as inc (increasing) or dec (decreasing) if sites are consecutive; comparison between two non-consecutive sites are indicated as > (first site greater than second site) or < (first site less than second site)

biochemical oxygen demand and fecal coliform bacteria decreased and dissolved oxygen increased. In West Nose Creek concentrations of 11 parameters increased including total suspended solids, nutrients, bacteria and organic matter (total organic carbon and biochemical oxygen demand).

When the downstream (urban) components of Nose Creek and West Nose Creek are compared before they join (Table 8, column 7), the difference between the two Creeks is apparent. Nose Creek has generally higher concentrations of phosphorus and carbon, while West Nose Creek

has higher concentrations of total suspended solids, bacteria, nitrate + nitrite and dissolved oxygen.

The water quality at Nose Creek at the Mouth is influenced by the input of West Nose Creek as well as local urban inputs. A comparison of this site with the two sequentially upstream sites (Table 8, columns 4 and 5) shows a decrease in dissolved phosphorus and total organic carbon and an increase in total suspended solids and bacteria along Nose Creek as the higher concentrations in West Nose Creek are added. Within the City there is a general increase in total nitrogen, nitrate + nitrite, biochemical oxygen demand and lead, and to a lesser degree ammonia and zinc.

These results indicate that the major issues in the Nose Creek watershed are suspended solids, bacteria, nutrients, organic matter and a few metals. Airdrie is contributing suspended solids, bacteria and zinc. West Nose Creek is contributing suspended solids, nutrients, organic matter and bacteria. Issues within the City of Calgary are suspended solids, nitrogen, bacteria, organic matter, lead and zinc.

3.5 OTHER ISSUES

3.5.1 Storm Events

The analysis of storm events is beyond the scope of this report, but a comparison between 'routine' data and storm-related data collected in 1980 is presented in Figure 6 (pages 58-65). These box and whisker plots illustrate the differences at each site, as well as the data collected at the two storm sewers in the basin. In general, concentrations in the storm event data are greater than in the routine data for each site. The higher concentrations measured in the storm sewer samples illustrate the inputs to Nose Creek during dry weather and storm events combined.

Schonekess (1981) summarized the stormwater portion of his study as follows:

"The results of the study indicate that urbanization and associated storm sewer discharges have an appreciable effect on the water quality of Nose Creek and West Nose Creek. Concentrations of chemical parameters in the creeks within the urban area of Calgary can increase by as much as 49 times during storm events as compared to background values at the city boundary."

3.5.2 Pesticides

The 1980 study (Schonekess 1981) included some analysis for the herbicide 2,4-D and the insecticides Temephos (Abate) and Chlorpyrifos (Dursban). Four creek sites were sampled twice in May during dry weather and two sites were samples during a storm event in May. Nine samples were taken from storm sewers. The analytical test were less sensitive in 1980, with a detection limit of 0.001 mg/L (1 μ g/L). The results for 2,4-D indicated that detectable levels are measured in the storm sewers and in two of the creek sites (West Nose Creek upstream of Nose Creek and at the mouth). Except during the storm event in May, the

insecticide samples were all below detection. The author concluded that the normal watering of lawns caused 2,4-D to enter the streams via storm sewers directly or by groundwater infiltration, and that Temephos was entering the streams as a result of storm run-off. 2,4-D violated the guidelines for freshwater aquatic life, irrigation, livestock watering and drinking water in 3 of 10 creek samples and 6 of 9 storm sewer samples.

The study of pesticides (39 compounds) entering the Western Headworks canal to Chestermere Lake and the Western Irrigation District on June 22, 1998 included two sites in the Nose Creek watershed; at Country Hills Blvd and 12 Street NE and at the mouth (Byrtus 1999). Detection limits (0.005 μ g/L for most compounds) were much better than in 1980. Seven pesticides (2,4-D, 2,4-DP, atrazine, bromoxynil, MCPA, MCPP, picloram) were detected at the upstream site and eleven pesticides (also clopyralid, diazinon, dicamba, lindane) were detected at the mouth. All pesticides were acceptable under existing water quality guidelines with the exception of dicamba for the most sensitive crops (e.g. sunflower).

3.5.3 Total Dissolved Solids

A study of total dissolved solids (TDS) in Nose Creek was initiated because the TDS load was significantly higher than in the Bow River or its tributaries (Grasby at el. 1997). The authors concluded that

"During base flow conditions 2 pulses of Bow River water (the municipal supply) are added to Nose Creek via leaky pipes in the cities of Airdrie and Calgary [via groundwater infiltration]. This water increases discharge in the creek 4 fold during base flow, diluting the dissolved inorganics, and thus enhancing water quality in Nose Creek. Municipal water accounts for 35% of spring and summer discharge, and up to 77% of fall and winter discharge in Nose Creek."

They also concluded

"...the processing facility that removes S from natural gas near Crossfield may be a major source of dissolved SO_4 in the headwaters of the creek."

Other sources downstream include local soils through the agricultural lands and oxidation of reduced forms of S in the till, related to the influx of municipal groundwater, within Calgary.

4.0 WATER QUALITY GUIDELINES

4.1 METHODS

Relevant water quality guidelines were indicated on the box and whisker plots by a horizontal line at the guideline value. Data values above the horizontal line violate the guideline and data values below the horizontal guideline are acceptable in relation to the guideline. Water quality guidelines were taken from the Canadian Water Quality Guidelines (CWQG - CCREM 1987 and updates) and from the Alberta Ambient Surface Water Quality Interim Guidelines (ASWQG - Environmental Protection and Enhancement Act 1993). Data were tabulated to indicate how frequently the guidelines were violated.

The Canadian Water Quality Guidelines (CCREM 1987 and updates) were developed to provide basic scientific information about the effects of water quality parameters on uses in order to assess water quality issues and concerns and to establish water quality objectives for specific sites. Where site specific objectives have not been developed (as is the case here), these Guidelines provide a basis for assessment.

Selected Canadian Water Quality Guidelines for irrigation, livestock watering, drinking water and freshwater aquatic life are summarized in Appendix B (Table B1). The guidelines for recreation are generally more descriptive than quantitative, however there are guidelines for pH (5.0 - 9.0) and for bacteriological parameters.

Fecal coliform bacteria have been used as a fecal pollution indicator for many years because of ease of measurement, but counts do not correlate well with the incidence of gastrointestinal illness, and the use of this group is being phased out. Recent improvements in detection and measurement techniques enable the use of organisms that give a more reliable indication of health risk. These organisms include enterococci and the fecal coliform *Escherichia coli*.

Guidelines for recreational water quality were updated in 1992 and as a result the bacteriological guideline is:

"The geometric mean of at least five samples taken during a period not to exceed 30 d, should not exceed 2000 *E. coli* per litre. Resampling should be performed when any sample exceeds 4000 *E. coli* per litre. When experience has shown that 90%, or more, of the fecal coliform are *E. coli*, either fecal coliform or *E. coli* may be determined. When less than 90% of the fecal coliforms are *E. coli*, only *E. coli* may be determined (Health and Welfare Canada 1990)."

Bacteriological results are more typically reported as #/100mL, therefore the corresponding recreation guideline is 200/100mL.

In practice, the previous guideline for fecal coliform bacteria (200/100mL) has often been applied in absolute terms, since sampling frequency does not meet the guideline requirements. This simplification will be applied in the analyses found in this report.

According to the Federal-Provincial Subcommittee on Drinking Water, it is not appropriate to recommend numerical guidelines for raw public water supplies because treatment technology is available to produce drinking water from water of almost any quality (CCREM 1987 and updates). Comparison of water quality data with drinking water guidelines is used here to illustrate when treatment is required.

Freshwater aquatic life guidelines for cadmium, copper, lead and nickel are influenced by the hardness of the water. As the hardness of the water decreases, these metals become more toxic. The freshwater aquatic life guideline concentration used in the analysis was based on a review of water hardness data.

Under the Environmental Protection and Enhancement Act, Alberta Ambient Surface Water Quality Interim Guidelines were published in September 1993 (Appendix B, Table B2). These interim guidelines were based on a review of the Alberta Surface Water Quality Objectives (Alberta Environment 1977), current monitoring data and the Canadian Water Quality Guidelines.

Guidelines are provided for forty parameters and the basis of their application is as follows: "These interim guidelines represent water quality suitable for most uses either through direct use or prepared for use by common water treatment practices. They apply to surface water except in areas of close proximity to outfalls.

There are many instances where the natural water quality of a lake or river does not meet some of the suggested limits. In these cases, the guidelines will not apply. It should be noted, however, that where the natural existing quality is inferior to desirable guidelines, care must be taken in allowing any further deterioration of water quality. Naturally occurring circumstances are not taken into account in these guidelines and due consideration must be given where applicable (e.g. spring runoff effect on colour, odour, etc.)."

4.2 **RESULTS**

Table 9 summarizes the overall compliance of the data base with the guidelines. Data from the storm sewers were omitted, but inclusion of storm event data would increase the frequency of violations for most parameters. The box and whisker plots (Figures 2-5) illustrate the data distribution of portions of the data base in relation to the guidelines.

The **irrigation** guidelines provide protection from the accumulation of salts in the root zone, loss of permeability of soil because of excess sodium or leaching of calcium, and toxicity of ions, trace elements or pesticides. Local conditions of soil type, crop and evapotranspiration may affect whether water quality which violates these guidelines can be used for irrigation (CCREM 1987 and updates).

GUIDELINE	PARAMETER AND GUIDELINE VALUE	N	% COMPLIANCE
Irrigation	Total Dissolved Solids (500 - 3000 mg/L)	273	43 - 100
	Conductivity (1.0 mS/cm)	110	56
	Chloride (100 mg/L)	98	81
	Total Coliform Bacteria (1000/100 mL)	319	51
	Fecal Coliform Bacteria (100/100 mL)	324	34
	Chromium (0.1 mg/L)	340	100*
	Copper (0.2 - 1.0 mg/L)	343	99 - 100*
	Lead (0.2 mg/L)	343	96
	Zinc (1.0 - 5.0 mg/L)	353	100*
	Aluminum (5 mg/L)	88	97
	Iron (5 mg/L)	100	97
	Cadmium (0.005 mg/L)	79	53
	Manganese (0.2 mg/L)	23	96
Livestock Watering	Sulphate (1000 mg/L)		99
	Copper (0.5 mg/L)	343	100*
	Lead (0.1 mg/L)	343	94
	Aluminum (5 mg/L)	88	97
Drinking Water	Total Dissolved Solids (500 mg/L)	273	43
	Sodium (200 mg/L)	99	81
	Chloride (250 mg/L)	98	92
	Sulphate (500 mg/L)	99	97
	pH (6.5 - 8.5)	360	88
	Chromium (0.05 mg/L)	340	99
	Copper (1.0 mg/L)	343	100*
	Lead (0.01 mg/L)	343	58
	Zinc (5.0 mg/L)	353	100*
	Iron (0.3 mg/L)	100	18
	Cadmium (0.005 mg/L)	79	53
	Manganese (0.05 mg/L)	23	26
	Fecal Coliform Bacteria	324	0

 Table 9 Data Exceeding Guideline Values

and the second second second

GUIDELINE	PARAMETER AND GUIDELINE VALUE	N	% COMPLIANCE
Freshwater Aquatic Life	Ammonia (0.1 - 1.37 mg/L)	308	46 - 98
	Dissolved Oxygen (5.0 - 9.5 mg/L)	225	68
	pH (6.5 - 9.0)	360	99
	Chromium (0.002 - 0.02 mg/L)	340	59 - 95
	Copper (0.004 mg/L)	343	45
	Lead (0.007 mg/L)	343	52
	Zinc (0.3 mg/L)	353	76
	Aluminum (0.005 - 0.1 mg/L)	88	0 - 34
	Iron (0.3 mg/L)	100	18
	Nickel (0.15 mg/L)	91	99
	Cadmium (0.00006 mg/L)	79	0
	Phenolics (0.001 mg/L)	21	29
Recreation	E. coli (200/100 mL)	75	53**
Alberta Surface Water	Total Phosphorus (0.05 mg/L)	385	4
	Dissolved Phosphorus (0.05 mg/L)	289	15
	Total Nitrogen (1.0 mg/L)	288	20
	Total Coliform Bacteria (5000 mg/L)	319	82
	Total Coliform Bacteria (2400 mg/L)	319	67
	Total Coliform Bacteria (1000/100 mL)	319	51
	Fecal Coliform Bacteria (1000/100 mL)	324	81
	Fecal Coliform Bacteria (200/100 mL)	324	48
	Chromium (0.05 mg/L)	340	99
	Copper (0.02 mg/L)	343	84
	Lead (0.05 mg/L)	343	89
	Zinc (0.05 mg/L)	343	86
	Phenolics (0.005 mg/L)	21	57

Table 9 cont.	Data	Exceeding	Guideline	Values
---------------	------	-----------	-----------	--------

* at least one value exceeded the guideline, but rounding results in 100% compliance

** high number of zero values relative to fecal coliform data were unusual

The irrigation guidelines were most frequently violated for bacteria, cadmium, conductivity and total dissolved solids. Use of water exceeding the guidelines for salinity related parameters (conductivity, total dissolved solids) may result in some loss of production for sensitive crops such as raspberries, strawberries, carrots and beans. Water with fecal coliform bacteria concentrations violating the irrigation guidelines would raise concerns when used on raw produce. Metals guidelines are based on toxicity when used on a continuous basis, therefore occasional violations are not a cause for concern. Water quality for livestock watering was generally acceptable.

Raw water quality was not acceptable for **drinking water** without some treatment. Drinking water that contains substances in concentrations greater than the guideline limits either is capable of producing deleterious health effects or is aesthetically objectionable (CCREM 1987 and updates). The major violation of drinking water guidelines relates to fecal coliform bacteria, however, bacteria are removed with the appropriate treatment and no surface water in Alberta should be consumed without treatment.

In addition to fecal coliform bacteria, concentrations of iron, manganese, total dissolved solids, cadmium and lead violated the guidelines relatively frequently. The drinking water guidelines for total dissolved solids, iron and manganese are based primarily on aesthetic considerations. Total dissolved solids concentrations above the guideline value may be unpalatable. At higher concentrations, iron and manganese cause staining of laundry and plumbing fixtures and undesirable tastes in beverages. Their presence in water may lead to the accumulation of microbial growths, leading to the deposition of a slimy coat in piping (CCREM 1987 and updates). The lead and cadmium may be related to high suspended sediments and easily removed with treatment.

Violations of the **freshwater aquatic life** guidelines for dissolved oxygen and ammonia can both lead to stress or death for fish or aquatic life. Large quantities of ammonia reduce the oxygen-carrying capacity of the blood of fish, causing the fish to suffocate. Temperature and pH affect the toxicity of ammonia.

Violations of the metals guidelines for the protection of freshwater aquatic life may have an effect on several species, restricting their growth and survival. If these metals are principally associated with sediment particles, they are of less concern to aquatic life than if the metals are in the dissolved form.

The high frequency of violations of the guideline for phenolics is not an unusual occurrence in the rivers of southern Alberta. Phenols can be contributed to rivers from industrial sources, but organic matter decomposition is also a common source. The general nature of the analytical test does not make this distinction.

Violations of the recreational guideline for E. coli (as defined for this analysis) identify increased health risk for recreational users including respiratory, gastrointestinal, eye, ear, skin and allergy illnesses. The results indicate the potential for an increased health risk for recreational users. The relatively high frequency of zero values in the data base was unusual, serving to reduce the frequency of violations.

There was a relatively high frequency of violations of the Alberta Surface Water Quality Guidelines tested, except for metals. The phosphorus and total nitrogen results indicate the generally nutrient rich nature of the waters in the Nose Creek watershed. The bacteria concentrations will limit direct contact recreation or vegetable crop irrigation.

5.0 WATER QUALITY ISSUES

Following is a summary of the results in terms of the issues of suspended solids, salinity, nutrients and organic matter, bacteria, metals and pesticides.

Total suspended solids is a measure of the sediment carried in the water. The sediments not only carry the minerals which make up the particles, but contaminants can adhere to the particles and be transported downstream. In general the concentration of suspended solids increases as the water moves through the watershed. The largest increase was along West Nose Creek, however the contribution from Airdrie was also statistically significant. Concentrations are often higher during storm events and the highest concentrations were measured in storm sewers. The Alberta Surface Water Quality guidelines state that suspended solids are not to be increased by more than 10 mg/L over background values. The increase of median values from upstream to downstream of Airdrie was 7 mg/L, while the increase along West Nose Creek was 45 mg/L. The data collected at Nose Creek at the City Limits indicates that total suspended solids are increasing.

Total dissolved solids and conductivity provide a measure of the salinity of the water, and salinity is an important factor in irrigation water quality. Although there was no general increase in salinity through the basin, the concentrations often exceeded the irrigation guidelines for sensitive crops. Storm sewer concentrations tended to be lower than creek concentrations.

Nutrients (phosphorus, nitrogen) provide the basis for plant growth, and the high concentrations (frequently exceeding the Alberta Surface Water Quality guidelines) throughout the watershed are not desirable. Total organic carbon is an indicator of the organic matter which may be entering the creek or can be stimulated by the nutrients. Concentrations of phosphorus and total organic carbon were greatest in Nose Creek at the four upstream sites. Although there was a significant increase in all nutrients along West Nose Creek, this was mainly because the upstream concentrations were relatively low. Concentrations of phosphorus and total organic carbon at Nose Creek at the Mouth were more similar to West Nose Creek (i.e. lower) than Nose Creek before their confluence. Unlike the other nutrients, median nitrogen concentrations continued to increase downstream and were highest at the Mouth. Storm sewer concentrations tended to be highest for nitrogen and total phosphorus. Dissolved phosphorus and total organic carbon concentrations in storm sewers, though higher than local creek concentrations, were comparable or lower than upstream Nose Creek concentrations.

Bacteria concentrations were generally high in the Nose Creek watershed, exceeding irrigation guidelines at most sites. Bacteria increased significantly through Airdrie and along West Nose Creek. Concentrations tended to be highest in West Nose Creek and Nose Creek at the Mouth. Storm sewer concentrations of bacteria were highest. Data at the City Limits indicates that bacteria concentrations are decreasing.

Significant increases in lead were measured in the downstream portion of Nose Creek within the City of Calgary. Zinc also increased in this reach, but also through Airdrie. Concentrations of metals tended to be highest in storm sewers. Although irrigation would be relatively unaffected by the metals, with the possible exception of cadmium, concentrations of several metals may be of concern for drinking water and freshwater aquatic life.

Although there was very limited data for pesticides, it is apparent that pesticides are entering Nose Creek.

PROFESSIONAL RESPONSIBILITY

ASPB Stamp

MADAWASKA CONSULTING

REFERENCES

Alberta Environment. 1977. Surface Water Quality Objectives. Water Quality Branch, Standards and Approvals Division. 17 pp.

Analytical Software. 1992. STATISTIX User's Manual Version 4.0. Tallahassee, Florida.

Anderson, A.M. personal communication. Alberta Environmental Protection, Water Sciences Branch.

Byrtus, G. Alberta Environmental Protection, Municipal Development Bran ch. Memo to G. Greenlee, Alberta Agriculture, Food and Rural Development, Irrigation Branch. Feb. 19, 1999.

CCREM (Canadian Council of Resource and Environment Ministers). 1987 (and updates). Canadian Water Quality Guidelines. Environmental Quality Guidelines Division, Water Quality Branch, Ottawa, Ontario.

Cross, P.M., H.R. Hamilton and S.E.D. Charlton. 1986. The Limnological Characteristics of the Bow, Oldman and South Saskatchewan Rivers (1979-82). Part I Nutrient and Water Chemistry. Alberta Environment, Pollution Control Division, Water Quality Control Branch. 182 pp.

Grasby, S.E., I. Hutcheon and H.R. Krouse. 1997. Application of the stable isotope composition of SO_4 to tracing anomalous TDS in Nose Creek, southern Alberta, Canada. Applied Geochemistry 12:567-575.

Intelligent Decision Technologies. 1998. WQSTAT PLUS User's Guide. Longmont, Colorado.

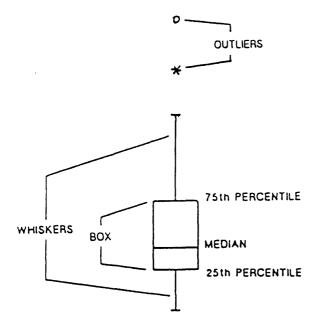
Schonekess, P.H. 1981. Nose Creek Water Quality Study. Alberta Environment, Pollution Control Division. 100 pp.

Sosiak, A. 1994. Chestermere Lake Water Quality Monitoring. Alberta Environmental Protection, Technical Services and Monitoring Division, Surface Water Assessment Branch. 19 pp.

Sosiak, A. 1996. Bow River Synoptic Surveys 1994-1995 Preliminary Evaluation of Results. Alberta Environmental Protection, Water Management Division, Water Sciences Branch. 103 pp.

NOSE CREE SITE 1		01/m + **	ייזמרוכ				WEST NOS	E CPE	FK AT 2	4 STREE	TNW		
					VEDIAN	MANDADA	SITE 6		MEAN	SD	MINIMUM	MEDIAN	MAXIMIM
		MEAN	SD			MAXIMUM		N 32	0.093	0.051	0.019	0.086	0.260
TP	23	0.379	0.195	0.071	0.370	0.860	TP					0.080	0.200
DP	23	0.335	0.198	0.045	0.310	0.840	DP	32	0.072	0.035	0.018		
TN	23	2.01	0.52	0.91	1.94	2.92	TN	31	0.94	0.48	0.51	0.77	2.52
NIT	23	0.071	0.269	0.002	0.010	1.300	NIT	31	0.044	0.085	0.002	0.018	0.430
NH3	23	0.133	0.100	0.006	0.110	0.340	DNH3	31	0.108	0.189	0.001	0.050	1.000
TOC	23	27.8	12.9	11.2	25.0	80.0	TOC	32	12.2	5.7	6.0	11.3	35.0
TEMP	18	10.7	2.3	7.0	10.0	16.0	DO	20	8.3	1.9	3.9	8.5	12.0
DO	15	4.3	2.6	1.6	3.3	10.6	BOD	31	2.5	2.6	0.6	1.9	15.8
BOD	23	3.4	1.8	0.4	3.1	9.6	PH	32	8.1	0.4	7.0	8.2	8.8
PH	23	7.8	0.3	7.2	7.7	8.6	FR	32	515	119	50	537	666
TDS	23	606	141	290	608	865	TSS	32	9	11	1	4	63
					6	64	TCOLIF	29	1269	1365	10	800	5100
TSS	23	18	20	1					393	349	10	300	1340
TCOLIF	20	564	850	0	206	3200	FCOLIF	29					2300
FCOLIF	20	152	280	0	68	1290	FSTREP	19	398	519	4	212	
FSTREP	13	129	144	20	108	548	CR	30	0.002	0.001	0.002	0.002	0.004
CR	23	0.003	0.002	0.002	0.002	0.008	CU	31	0.005	0.007	0.001	0.002	0.032
CU	23	0.007	0.007	0.001	0.003	0.025	PB	31	0.032	0.161	0.001	0.002	0.900
PB	23	0.085	0.335	0.001	0.004	1.600	ZN	31	0.024	0.055	0.001	0.007	0.300
ZN	23	0.011	0.011	0.002	0.006	0.054							
							WEST NOS	E CRE	EEK ABO	VE CON	FLUENCE W	ITH NOSE	CREEK
NOSE CRE	EK BE		פופטא				SITE 7	N	MEAN	SD			MAXIMUM
SITE 2	dr de N	MEAN	SD		MEDIAN	MAXIMUM	TP	39	0.287	0.276	0.095	0.185	1.550
													0.157
TP	26	0.346	0.461	0.075	0.230	2.450	DP	39	0.083	0.028	0.035	0.075	
DP	26	0.221	0.179	0.035	0.200	0.730	TN	39	1.63	1.14	0.47	1.17	6.05
TN	26	1.39	0.54	0.43	1.41	2.27	NIT	39	0.185	0.277	0.002	0.067	1.250
NIT	26	0.077	0.180	0.002	0.016	0.720	DNH3	39	0.170	0.242	0.001	0.100	1.500
NH3	26	0.116	0.126	0.006	0.075	0.450	TOC	39	14.9	7.4	8.8	12.3	47.5
TOC	26	18.9	5.4	9.5	19.3	35.0	TEMP	13	11.3	1.8	7.0	12.0	13.0
TEMP	18	11.3	2.8	7.0	11.5	18.0	DO	20	8.1	1.4	5.5	8.2	11.6
DO	21	6.2	2.1	3.3	5.6	9.5	BOD	38	4.3	3.3	1.5	3.0	14.5
							PH	39	8 .0	0.3	7.0	8.0	8.5
BOD	26	3.8	1.7	0.8	3.6	7.2							
PH	26	7.9	0.4	7.2	7.9	8.5	FR	39	514	103	229	526	704
TDS	26	448	101	240	472	585	TSS	39	123	149	3	49	528
TSS	26	27	38	5	13	186	TCOLIF	35	8389	15053	92	3000	67000
TCOLIF	24	1259	1644	44	625	7500	FCOLIF	35	1784	3587	60	800	20000
FCOLIF	24	244	265	4	168	1000	FSTREP	27	1783	3230	24	540	12800
FSTREP	17	86	102	4	40	400	CR	38	0.002	0.001	0.002	0.002	0.007
CR	26	0.003	0.002	0.002	0.002	0.009	CU	38	0.009	0.009	0.001	0.006	0.034
CU	26	0.008	0.009	0.002	0.004	0.038	PB	38	0.057	0.291	0.001	0.003	1.800
-													
PB	26	0.159	0.783	0.001	0.004	4.000	ZN	38	0.023	0.022	0.001	0.018	0.084
ZN	26	0.027	0.049	0.003	0.012	0.190							
									D.1. 00001				
				CITY OF CALGARY STORM SEWER #27									
NOSE CRE							SITE 8	N	MEAN	SD			
SITE 2.5	N	MEAN	SD			MAXIMUM	SITE 8 TP	N 102	MEAN 0.826	SD 0.712	0.075	0.700	4.300
				MINIMUM 0.010	MEDIAN 0.255	MAXIMUM 2.310	SITE 8	N	MEAN	SD			
SITE 2.5	N	MEAN	SD				SITE 8 TP	N 102	MEAN 0.826	SD 0.712	0.075	0.700 0.134	4.300 0.960
SITE 2.5 TP NIT	N 76	MEAN 0.372 0.498	SD 0.388 0.500	0.010 0.015	0.255 0.500	2.310 4.000	SITE 8 TP DP TN	N 102 102 102	MEAN 0.826 0.158 6.49	SD 0.712 0.111 2.93	0.075 0.027 2.58	0.700 0.134 5.70	4.300 0.960 19.32
SITE 2.5 TP NIT NH3	N 76 73 74	MEAN 0.372 0.498 0.384	SD 0.388 0.500 0.490	0.010 0.015 0.025	0.255 0.500 0.250	2.310 4.000 4.000	SITE 8 TP DP TN NH3	N 102 102 102 100	MEAN 0.826 0.158 6.49 0.526	SD 0.712 0.111 2.93 0.409	0.075 0.027 2.58 0.020	0.700 0.134 5.70 0.430	4.300 0.960 19.32 2.200
SITE 2.5 TP NIT NH3 TEMP	N 76 73 74 75	MEAN 0.372 0.498 0.384 9.3	SD 0.388 0.500 0.490 7.1	0.010 0.015 0.025 -0.5	0.255 0.500 0.250 10.0	2.310 4.000 4.000 20.5	SITE 8 TP DP TN NH3 TOC	N 102 102 102 100 100	MEAN 0.826 0.158 6.49 0.526 24.2	SD 0.712 0.111 2.93 0.409 17.2	0.075 0.027 2.58 0.020 6.4	0.700 0.134 5.70 0.430 18.1	4.300 0.960 19.32 2.200 95.0
SITE 2.5 TP NIT NH3 TEMP DO	N 76 73 74 75 70	MEAN 0.372 0.498 0.384 9.3 6.8	SD 0.388 0.500 0.490 7.1 2.1	0.010 0.015 0.025 -0.5 1.4	0.255 0.500 0.250 10.0 6.8	2.310 4.000 4.000 20.5 12.2	SITE 8 TP DP TN NH3 TOC BOD	N 102 102 102 100 100 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0	SD 0.712 0.111 2.93 0.409 17.2 12.4	0.075 0.027 2.58 0.020 6.4 0.6	0.700 0.134 5.70 0.430 18.1 10.7	4.300 0.960 19.32 2.200 95.0 76.0
SITE 2.5 TP NIT NH3 TEMP DO BOD	N 76 73 74 75 70 74	MEAN 0.372 0.498 0.384 9.3 6.8 4.3	SD 0.388 0.500 0.490 7.1 2.1 4.4	0.010 0.015 0.025 -0.5 1.4 1.0	0.255 0.500 0.250 10.0 6.8 3.0	2.310 4.000 4.000 20.5 12.2 27.1	SITE 8 TP DP TN NH3 TOC BOD PH	N 102 102 102 100 100 102 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4	0.075 0.027 2.58 0.020 6.4 0.6 6.2	0.700 0.134 5.70 0.430 18.1 10.7 7.5	4.300 0.960 19.32 2.200 95.0 76.0 8.5
SITE 2.5 TP NIT NH3 TEMP DO BOD PH	N 76 73 74 75 70 74 76	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4	SD 0.388 0.500 0.490 7.1 2.1 4.4 0.4	0.010 0.015 -0.5 1.4 1.0 7.5	0.255 0.500 0.250 10.0 6.8 3.0 8.4	2.310 4.000 20.5 12.2 27.1 9.5	SITE 8 TP DP TN NH3 TOC BOD PH TDS	N 102 102 102 100 100 100 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 355	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS	N 76 73 74 75 70 74 76 76	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 79	SD 0.388 0.500 0.490 7.1 2.1 4.4 0.4 413	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14	2.310 4.000 20.5 12.2 27.1 9.5 3581	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS	N 102 102 102 100 100 100 100 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 355 833	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF	N 76 73 74 75 70 74 76 76 73	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 79 1278	SD 0.388 0.500 0.490 7.1 2.1 4.4 0.4 413 1734	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550	2.310 4.000 4.000 20.5 12.2 27.1 9.5 3581 8500	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF	N 102 102 102 100 100 100 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 355 833 370067	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FCOLIF	N 76 73 74 75 70 74 76 76	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 79	SD 0.388 0.500 0.490 7.1 2.1 4.4 0.4 413	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14	2.310 4.000 4.000 20.5 12.2 27.1 9.5 3581 8500 4000	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS	N 102 102 102 100 100 100 100 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 355 833	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF	N 76 73 74 75 70 74 76 76 73	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 79 1278	SD 0.388 0.500 0.490 7.1 2.1 4.4 0.4 413 1734	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550	2.310 4.000 4.000 20.5 12.2 27.1 9.5 3581 8500 4000	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF	N 102 102 102 100 100 100 100 100 65	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 355 833 370067	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 999999
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FCOLIF FSTREP	N 76 73 74 75 70 74 76 76 73 74	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 79 1278 409	SD 0.388 0.500 7.1 2.1 4.4 0.4 413 1734 804 319	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56	2.310 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FCOLIF FSTREP	N 102 102 102 100 100 100 100 100 65 65 65	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 355 833 370067 136577 22285	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 999999 999999 320000
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FCOLIF FSTREP CR	N 76 73 74 75 70 74 76 73 74 74 75	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 79 1278 409 172 0.012	SD 0.388 0.500 0.490 7.1 2.1 4.4 0.4 413 1734 804 319 0.019	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0 0.001	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003	2.310 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FCOLIF FSTREP CR	N 102 102 100 100 100 100 100 100 65 65 65 102	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 833 370067 136577 22285 0.004	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.004	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 999999 999999 320000 0.027
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FCOLIF FSTREP CR CU	N 76 73 74 75 70 74 76 76 73 74 74 75 75	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 79 1278 409 172 0.012 0.039	SD 0.388 0.500 0.490 7.1 2.1 4.4 0.4 413 1734 804 319 0.019 0.099	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0 0 0.001 0.001	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014	2.310 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU	N 102 102 100 100 100 100 100 100 100 65 65 65 102 102	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 833 370067 136577 22285 0.004 0.072	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.004 0.425	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 69 10 0.002 0.002	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.022	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 999999 320000 0.027 4.300
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FCOLIF FSTREP CR CU PB	N 76 73 74 75 70 74 76 73 74 74 75 75	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 79 1278 409 1278 409 172 0.012 0.039 0.033	SD 0.388 0.500 0.490 7.1 2.1 4.4 0.4 413 1734 804 319 0.019 0.099 0.032	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0 0 0.001 0.001 0.000	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015	2.310 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU PB	N 102 102 100 100 100 100 100 100 100 65 65 65 102 102 102	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 355 833 370067 136577 22285 0.004 0.072 0.508	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.004 0.425 0.825	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002 0.002 0.001	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.022 0.250	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 320000 0.027 4.300 4.770
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FCOLIF FSTREP CR CU PB ZN	N 76 73 74 75 70 74 76 73 74 74 75 75 75	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 79 1278 409 172 0.012 0.039 0.033 0.320	SD 0.388 0.500 0.490 7.1 2.1 4.4 0.4 413 1734 804 319 0.099 0.032 2.097	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0 0 0.001 0.000 0.001	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015 0.019	2.310 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140 18.200	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU	N 102 102 100 100 100 100 100 100 100 65 65 65 102 102	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 833 370067 136577 22285 0.004 0.072	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.004 0.425	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 69 10 0.002 0.002	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.022	0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 999999 320000 0.027 4.300
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FCOLIF FSTREP CR CU PB ZN EC	N 76 73 74 75 70 74 76 73 74 75 75 75 75 75	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 79 1278 409 172 0.012 0.012 0.033 0.320 1.14	SD 0.388 0.500 7.1 2.1 4.4 0.4 413 1734 804 319 0.019 0.032 2.097 0.57	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0.001 0.001 0.000 0.001 0.20	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015 0.019 1.03	2.310 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140 18,200 3.39	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU PB	N 102 102 100 100 100 100 100 100 100 65 65 65 102 102 102	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 355 833 370067 136577 22285 0.004 0.072 0.508	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.004 0.425 0.825	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002 0.002 0.001	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.022 0.250	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 320000 0.027 4.300 4.770
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FCOLIF FCOLIF FSTREP CR CU PB ZN EC CA	N 76 73 74 75 70 74 76 73 74 75 75 75 75 75	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 79 1278 409 172 0.012 0.039 0.033 0.320 0.114 67.2	SD 0.388 0.500 0.490 7.1 2.1 4.4 0.4 413 1734 804 319 0.019 0.099 0.032 2.097 0.57 39.3	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0.001 0.000 0.0001 0.000 0.0001 0.20 3.4	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015 0.019 1.03 58.8	2.310 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140 18.200 3.39 211.6	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU PB ZN	N 102 102 102 100 100 100 100 100 65 65 65 102 102 102	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 833 370067 136577 22285 0.004 0.072 0.508 0.151	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.004 0.425 0.825 0.146	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002 0.002 0.001 0.003	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.022 0.250	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 320000 0.027 4.300 4.770
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FCOLIF FCOLIF FSTREP CR CU PB ZN EC CA MG	N 76 73 74 75 70 74 76 76 73 74 75 75 75 75 75 75 75	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 79 1278 409 172 0.012 0.039 0.033 0.320 1.14 67.2 51.3	SD 0.388 0.500 7.1 2.1 4.4 413 1734 804 319 0.019 0.032 2.097 0.57 39.3 33.9	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0.001 0.001 0.001 0.000 0.001 0.000 0.001 0.200 3.4 7.0	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015 0.019 1.03 58.8 44.4	2.310 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140 18.200 3.39 211.6 211.5	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU PB ZN CITY OF C	N 102 102 102 100 100 100 100 100 65 65 65 102 102 102	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 833 370067 136577 22285 0.004 0.072 0.508 0.151 RY STOI	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.004 0.425 0.825 0.146 RM SEW	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002 0.002 0.001 0.003 ER #13	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.022 0.250 0.101	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 320000 0.027 4.300 4.770 0.740
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FCOLIF FSTREP CR CU PB ZN EC CA MG NA	N 76 73 74 75 70 74 76 73 74 75 75 75 75 75	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 79 1278 409 172 0.012 0.039 0.033 0.320 0.114 67.2	SD 0.388 0.500 0.490 7.1 2.1 4.4 0.4 413 1734 804 319 0.019 0.099 0.032 2.097 0.57 39.3	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0.001 0.000 0.0001 0.000 0.0001 0.20 3.4	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015 0.019 1.03 58.8	2.310 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140 18.200 3.39 211.6	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU PB ZN	N 102 102 102 100 100 100 100 100 65 65 65 102 102 102	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 833 370067 136577 22285 0.004 0.072 0.508 0.151	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.004 0.425 0.825 0.146	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002 0.002 0.001 0.003	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.022 0.250 0.101	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 320000 0.027 4.300 4.770 0.740
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FCOLIF FSTREP CR CU PB ZN EC CA MG	N 76 73 74 75 70 74 76 76 73 74 75 75 75 75 75 75 75	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 79 1278 409 172 0.012 0.039 0.033 0.320 1.14 67.2 51.3	SD 0.388 0.500 7.1 2.1 4.4 413 1734 804 319 0.019 0.032 2.097 0.57 39.3 33.9	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0.001 0.001 0.001 0.000 0.001 0.000 0.001 0.200 3.4 7.0	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015 0.019 1.03 58.8 44.4	2.310 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140 18.200 3.39 211.6 211.5	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU PB ZN CITY OF C	N 102 102 100 100 100 100 100 100 100 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 833 370067 136577 22285 0.004 0.072 0.508 0.151 RY STOI MEAN	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 1284683 47662 0.004 0.425 0.825 0.146	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002 0.001 0.003 ER #13 MINIMUM	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.022 0.250 0.101 MEDIAN	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 320000 0.027 4.300 4.770 0.740
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FCOLIF FCOLIF FSTREP CR CU PB ZN EC CA MG NA K	N 76 73 74 75 70 74 76 75 75 75 75 75 75 75 75 74 73 74 73	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 409 1278 409 172 0.012 0.033 0.320 1.14 67.2 51.3 177.2 15.1	SD 0.388 0.500 7.1 2.1 4.4 0.4 413 1734 804 319 0.019 0.032 2.097 0.57 39.3 33.9 120.2 19.6	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0.001 0.001 0.000 0.001 0.200 3.4 7.0 16.2 2.8	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015 0.019 1.03 58.8 44.4 149.7 10.4	2.310 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140 18.200 3.39 211.6 211.5 671.0 151.6	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU PB ZN CITY OF C SITE 9 TP	N 102 102 102 100 100 100 100 100 100 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 833 370067 136577 22285 0.004 0.072 0.508 0.151 MEAN 0.879	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.004 0.425 0.825 0.146 SD 0.563	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002 0.001 0.003 ER #13 MINIMUM 0.105	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.022 0.250 0.101 MEDIAN 0.780	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 320000 0.027 4.300 4.770 0.740 MAXIMUN 2.470
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FCOLIF FSTREP CR CU PB ZN EC CA MG NA K SO4	N 76 73 74 75 70 74 76 73 74 76 75 75 75 75 75 75 75 73 74 73 74 73 72	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 79 1278 409 172 0.012 0.033 0.320 1.14 67.2 51.3 177.2 15.1 191.7	SD 0.388 0.500 7.1 2.1 4.4 0.4 413 1734 804 319 0.019 0.099 0.032 2.097 0.57 39.3 33.9 120.2 19.6 160.0	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0.001 0.001 0.001 0.000 0.001 0.20 3.4 7.0 16.2 2.8 0.6	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015 0.019 1.03 58.8 44.4 149.7 10.4 141.3	2.310 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140 18,200 3.39 211.6 211.5 671.0 151.6 1091.6	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU PB ZN CITY OF C SITE 9 TP DP	N 102 102 102 100 100 100 100 100 100 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 833 370067 136577 22285 0.004 0.072 0.508 0.151 RY STOI MEAN 0.879 0.194	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.004 0.425 0.825 0.146 SD 0.563 0.188	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002 0.002 0.001 0.003 ER #13 MINIMUM 0.105 0.060	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.002 0.002 0.250 0.101 MEDIAN 0.780 0.129	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 320000 0.027 4.300 4.770 0.740 MAXIMUN 2.470 0.940
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FCOLIF FCOLIF FSTREP CR CU PB ZN EC CA MG NA K SO4 CL	N 76 73 74 75 70 74 76 76 73 74 75 75 75 75 75 75 75 75 75 75 75 75 75	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 79 1278 409 172 0.012 0.039 0.033 0.320 1.14 67.2 51.3 177.2 15.1 191.7 80.8	SD 0.388 0.500 7.1 2.1 4.4 413 1734 804 319 0.019 0.032 2.097 0.57 39.3 33.9 120.2 19.6 160.0 102.3	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0.001 0.001 0.000 0.001 0.000 0.20 3.4 7.0 16.2 2.8 0.6 4.7	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015 0.019 1.03 58.8 44.4 149.7 10.4 141.3 43.3	2.310 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140 18.200 3.39 211.6 211.5 671.0 151.6 1091.6 643.4	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU PB ZN CITY OF C SITE 9 TP DP TN	N 102 102 102 100 100 100 100 100 100 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 355 833 370067 136577 22285 0.004 0.072 0.508 0.151 MEAN 0.879 0.194 3.66	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.004 0.425 0.825 0.146 RM SEW SD 0.563 0.188 N.88W	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002 0.002 0.001 0.003 ER #13 MINIMUM 0.105 0.060 0.96	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.022 0.250 0.101 MEDIAN 0.780 0.129 3.53	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 999999 320000 0.027 4.300 4.770 0.740 MAXIMUN X.470 0.940 8.08
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FSTREP CR CU PB ZN EC CA MG NA K SO4 CL TALK	N 76 73 74 75 70 74 76 76 76 73 74 75 75 75 75 75 74 73 74 73 72 73 76	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 79 1278 409 172 0.012 0.039 0.033 0.320 1.14 67.2 51.3 177.2 15.1 191.7 80.8 8435	SD 0.388 0.500 7.1 2.1 4.4 413 1734 804 319 0.039 0.032 2.097 0.57 39.3 33.9 120.2 19.6 1600 102.3 259	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0.001 0.0000 0.000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015 0.019 1.03 58.8 44.4 149.7 10.4 141.3 43.3 379	2.310 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140 18.200 3.39 211.6 211.5 671.0 151.6 1091.6 643.4 1447	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU PB ZN CITY OF C SITE 9 TP DP TN NH3	N 102 102 102 100 100 100 100 100 100 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 833 370067 136577 22285 0.004 0.072 0.508 0.151 MEAN 0.879 0.194 3.66 0.328	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.004 0.425 0.825 0.146 8M SEW SD 0.563 0.188 1.68 0.143	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002 0.002 0.001 0.003 ER #13 MINIMUM 0.105 0.060 0.96 0.050	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.022 0.250 0.101 MEDIAN 0.780 0.129 3.53 0.360	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 320000 0.027 4.300 4.770 0.740 MAXIMUN 2.470 0.940 8.08 0.500
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FCOLIF FCOLIF FSTREP CR CU PB ZN EC CA MG NA K SO4 CL TALK PALK	N 76 73 74 75 70 74 76 76 73 74 75 75 75 75 75 75 74 73 74 73 72 73 76 76	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 409 172 0.012 0.032 0.033 0.320 1.14 67.2 51.3 177.2 15.1 191.7 80.8 435 9.0	SD 0.388 0.500 7.1 2.1 4.4 0.4 319 0.019 0.032 2.097 0.57 39.3 33.9 120.2 19.6 160.0 102.3 259 9.6	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0 0.001 0.000 0.001 0.000 0.0001 0.000 0.0001 0.200 3.4 7.0 16.2 2.8 0.6 4.7 85 0.0	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015 0.019 1.03 58.8 44.4 149.7 10.4 141.3 43.3 379 7.9	2.310 4.000 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140 18.200 3.39 211.6 211.5 671.0 151.6 1091.6 643.4 1447 40.0	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU PB ZN CITY OF C SITE 9 TP DP TN NH3 TOC	N 102 102 102 100 100 100 100 100 100 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 833 370067 136577 22285 0.004 0.072 0.508 0.151 MEAN 0.879 0.194 3.66 0.328 22.4	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.04 284683 47662 0.825 0.146 SD 0.563 0.188 1.68 0.143 10.1	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002 0.001 0.003 ER #13 MINIMUM 0.105 0.060 0.96 0.050 3.5	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.250 0.101 MEDIAN 0.780 0.129 3.53 0.360 22.0	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 320000 0.027 4.300 4.770 0.740 MAXIMUN 2.470 0.940 8.08 0.500 43.0
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FCOLIF FCOLIF FSTREP CR CU PB ZN EC CA MG NA K SO4 CL TALK PALK ECOLI	N 76 73 74 75 70 74 76 76 73 74 75 75 75 75 74 73 72 73 76 75 75	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 79 1278 409 172 0.012 0.033 0.320 1.14 67.2 51.3 177.2 15.1 191.7 80.8 435 9.0 13672	SD 0.388 0.500 7.1 2.1 4.4 0.4 413 1734 804 319 0.019 0.032 2.097 0.57 39.3 33.9 120.2 19.6 160.0 102.3 259 9.6 115432	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0.001 0.000 0.001 0.000 0.001 0.20 3.4 7.0 16.2 2.8 0.6 4.7 85 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015 0.019 1.03 58.8 44.4 149.7 10.4 141.3 43.3 379 7.9 100	2.310 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140 18.200 3.39 211.6 211.5 671.0 151.6 1091.6 643.4 1447 40.0 999999	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU PB ZN CITY OF C SITE 9 TP DP TN NH3 TOC BOD	N 102 102 102 100 100 100 100 100 100 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 833 370067 136577 22285 0.004 0.072 0.508 0.151 MEAN 0.879 0.194 3.66 0.328 22.4 13.2	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.004 0.425 0.825 0.146 SD 0.563 0.188 1.68 0.143 10.1 8.6	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002 0.001 0.002 0.001 0.003 ER #13 MINIMUM 0.105 0.060 0.96 0.96 0.55	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.022 0.250 0.101 MEDIAN 0.780 0.129 3.53 0.360 22.0 12.8	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 999999 320000 0.027 4.300 0.740 MAXIMUN 2.470 0.740 8.08 8.0500 4.300 26.8
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FCOLIF FCOLIF FSTREP CR CU PB ZN EC CA MG NA K SO4 CL TALK ECOLI AL	N 76 73 74 75 70 74 76 76 76 73 74 75 75 75 74 73 72 73 76 75 75 75	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 79 1278 409 172 0.012 0.039 0.033 0.200 1.14 67.2 51.3 177.2 15.1 191.7 80.8 435 9.0 13672 1.18	SD 0.388 0.500 0.490 7.1 2.1 4.4 413 1734 804 319 0.099 0.032 2.097 0.57 39.3 33.9 120.2 19.6 160.0 102.3 259 9.6 115432 4.42	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0.001 0.001 0.000 0.001 0.000 0.001 0.20 3.4 7.0 16.2 2.8 0.6 4.7 85 0.0 0 0 0.8	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015 0.019 1.03 58.8 44.4 149.7 10.4 141.3 43.3 379 7.9 100 0.30	2.310 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140 18,200 3.39 211.6 211.5 671.0 151.6 1091.6 643.4 1447 40.0 999999 37.50	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU PB ZN CITY OF C SITE 9 TP DP TN NH3 TOC	N 102 102 102 100 100 100 100 100 100 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 833 370067 136577 22285 0.004 0.072 0.508 0.151 MEAN 0.879 0.194 3.66 0.328 22.4	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.04 284683 47662 0.825 0.146 SD 0.563 0.188 1.68 0.143 10.1	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002 0.001 0.003 ER #13 MINIMUM 0.105 0.060 0.96 0.050 3.5	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.250 0.101 MEDIAN 0.780 0.129 3.53 0.360 22.0	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 320000 0.027 4.300 4.770 0.740 MAXIMUN 2.470 0.940 8.08 0.500 43.0
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FCOLIF FCOLIF FSTREP CR CU PB ZN EC CA MG NA K SO4 CL TALK PALK ECOLI	N 76 73 74 75 70 74 76 76 73 74 75 75 75 75 74 73 72 73 76 75 75	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 79 1278 409 172 0.012 0.033 0.320 1.14 67.2 51.3 177.2 15.1 191.7 80.8 435 9.0 13672	SD 0.388 0.500 7.1 2.1 4.4 0.4 413 1734 804 319 0.019 0.032 2.097 0.57 39.3 33.9 120.2 19.6 160.0 102.3 259 9.6 115432	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0.001 0.000 0.001 0.000 0.001 0.20 3.4 7.0 16.2 2.8 0.6 4.7 85 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015 0.019 1.03 58.8 44.4 149.7 10.4 141.3 43.3 379 7.9 100	2.310 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140 18.200 3.39 211.6 211.5 671.0 151.6 1091.6 643.4 1447 40.0 999999	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU PB ZN CITY OF C SITE 9 TP DP TN NH3 TOC BOD	N 102 102 102 100 100 100 100 100 100 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 833 370067 136577 22285 0.004 0.072 0.508 0.151 MEAN 0.879 0.194 3.66 0.328 22.4 13.2	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.004 0.425 0.825 0.146 SD 0.563 0.188 1.68 0.143 10.1 8.6	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002 0.001 0.002 0.001 0.003 ER #13 MINIMUM 0.105 0.060 0.96 0.96 0.55	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.250 0.101 MEDIAN 0.780 0.129 3.53 0.360 22.0 12.8	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 999999 320000 0.027 4.300 0.740 MAXIMUN 2.470 0.740 8.08 8.0500 4.300 26.8
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FCOLIF FCOLIF FSTREP CR CU PB ZN EC CA MG NA K SO4 CL TALK ECOLI AL	N 76 73 74 75 70 74 76 76 76 73 74 75 75 75 74 73 72 73 76 75 75 75	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 79 1278 409 172 0.012 0.039 0.033 0.200 1.14 67.2 51.3 177.2 15.1 191.7 80.8 435 9.0 13672 1.18	SD 0.388 0.500 0.490 7.1 2.1 4.4 413 1734 804 319 0.099 0.032 2.097 0.57 39.3 33.9 120.2 19.6 160.0 102.3 259 9.6 115432 4.42	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0.001 0.001 0.000 0.001 0.000 0.001 0.20 3.4 7.0 16.2 2.8 0.6 4.7 85 0.0 0 0 0.8	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015 0.019 1.03 58.8 44.4 149.7 10.4 141.3 43.3 379 7.9 100 0.30	2.310 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140 18,200 3.39 211.6 211.5 671.0 151.6 1091.6 643.4 1447 40.0 999999 37.50	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU PB ZN CITY OF C SITE 9 TP DP TN NH3 TOC BOD PH	N 102 102 102 100 100 100 100 100 100 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 833 370067 136577 22285 0.004 0.072 0.508 0.151 MEAN 0.879 0.194 3.66 0.328 22.4 13.2 7.3	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.004 0.425 0.825 0.146 SD 0.525 0.146 SD 0.588 1.68 0.143 10.1 8.6 60.4	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002 0.002 0.001 0.003 ER #13 MINIMUM 0.105 0.060 0.96 0.050 3.5 0.5 6.7	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.022 0.250 0.101 MEDIAN 0.780 0.129 3.53 0.360 22.0 12.8 7.3 210	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 320000 0.027 4.300 4.770 0.740 MAXIMUN 2.470 0.740 MAXIMUN 2.470 0.940 8.08 0.500 43.0 26.8 7.9 845
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FCOLIF FCOLIF FSTREP CR CU PB ZN EC CA MG NA K SO4 CL TALK PALK ECOLI AL CD	N 76 73 74 75 70 74 76 73 74 75 75 75 75 75 75 73 74 73 72 73 76 75 75 75 75	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 79 1278 409 172 0.039 0.033 0.320 1.14 67.2 51.3 177.2 15.1 191.7 80.8 435 9.0 13672 1.18 0.0061	SD 0.388 0.500 0.490 7.1 2.1 4.4 413 1734 804 319 0.019 0.032 2.097 0.57 39.3 33.9 120.2 19.6 160.0 102.3 259 9.6 115432 4.42 0.0053 6.56	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0 0.001 0.000 0.0001 0.000 0.0001 0.200 3.4 7.0 16.2 2.8 0.6 4.7 85 0.0 0 0.001 0.000 0.0001 0.200 0.0001 0.000 0.0001 0.000 0.0001 0.000 0.0001 0.000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.00000000	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015 0.019 1.03 58.8 44.4 149.7 10.4 141.3 379 7.9 100 0.30 0.0050 0.65	2.310 4.000 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140 18.200 3.39 211.6 211.5 671.0 151.6 1091.6 643.4 1447 40.0 999999 37.50 0.0220 55.66	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU PB ZN CITY OF C SITE 9 TP DP TN NH3 TOC BOD PH TDS TSS	N 102 102 102 102 100 100 100 100 100 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 833 370067 136577 22285 0.004 0.072 0.508 0.151 MEAN 0.879 0.194 3.66 0.328 22.4 13.2 7.3 294 673	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.825 0.825 0.146 8M SEW SD 0.563 0.188 1.68 0.143 10.1 8.6 0.4 220 753	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002 0.001 0.003 ER #13 MINIMUM 0.105 0.060 0.050 3.5 0.5 6.7 82 1	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.022 0.250 0.101 MEDIAN 0.780 0.129 3.53 0.360 22.0 12.8 7.3 210 538	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 320000 0.027 4.300 4.770 0.740 MAXIMUN 2.470 0.940 8.08 0.500 43.0 26.8 7.9 845 3220
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FSTREP CR CU PB ZN EC CA MG NA K SO4 CL TALK PALK ECOLI AL CD FE	N 76 73 74 75 70 74 76 73 74 75 75 75 75 75 75 74 73 72 73 76 76 75 75 75 75 75 75 75 75 75 75 75 75 75	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 409 172 0.012 0.039 0.033 0.320 1.14 67.2 51.3 177.2 15.1 191.7 80.8 435 9.0 13672 1.18 0.0061 1.86	SD 0.388 0.500 7.1 2.1 4.4 113 1734 804 319 0.099 0.032 2.097 0.57 39.3 33.9 120.2 19.6 1600 102.3 259 9.6 115432 4.42 0.0053	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.20 3.4 7.0 16.2 2.8 0.6 4.7 85 0.0 0 0 0.001 0.000 0.001 0.000 0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.0000000 0.00000000	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015 0.019 1.03 58.8 44.4 149.7 10.4 141.3 43.3 379 7.9 100 0.30 0.0050	2.310 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140 18.200 3.39 211.6 211.5 671.0 151.6 1091.6 643.4 1447 40.0 999999 37.50 0.0220	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU PB ZN CITY OF C SITE 9 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF	N 102 102 102 100 100 100 100 100 100 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 833 370067 136577 22285 0.004 0.072 0.508 0.151 MEAN 0.879 0.194 3.66 0.328 22.4 13.2 7.3 294 673 332136	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.004 0.425 0.825 0.146 8M SEW SD 0.563 0.188 1.68 0.143 10.1 8.6 0.4 220 753 325481	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002 0.001 0.003 ER #13 MINIMUM 0.105 0.060 0.96 0.96 0.55 6.7 82 1 11000	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.250 0.101 MEDIAN 0.780 0.129 3.53 0.360 22.0 12.8 7.3 210 538 200000	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 320000 0.027 4.300 4.770 0.740 MAXIMUN 2.470 0.740 8.08 0.500 43.0 26.8 7.9 845 3220 999999
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FSTREP CR CU PB ZN EC CA MG NA K SO4 CL TALK PALK ECOLI AL CD FE	N 76 73 74 75 70 74 76 73 74 75 75 75 75 75 75 74 73 72 73 76 76 75 75 75 75 75 75 75 75 75 75 75 75 75	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 409 172 0.012 0.039 0.033 0.320 1.14 67.2 51.3 177.2 15.1 191.7 80.8 435 9.0 13672 1.18 0.0061 1.86	SD 0.388 0.500 0.490 7.1 2.1 4.4 413 1734 804 319 0.019 0.032 2.097 0.57 39.3 33.9 120.2 19.6 160.0 102.3 259 9.6 115432 4.42 0.0053 6.56	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0 0.001 0.000 0.0001 0.000 0.0001 0.200 3.4 7.0 16.2 2.8 0.6 4.7 85 0.0 0 0.001 0.000 0.0001 0.200 0.0001 0.000 0.0001 0.000 0.0001 0.000 0.0001 0.000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.00000000	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015 0.019 1.03 58.8 44.4 149.7 10.4 141.3 379 7.9 100 0.30 0.0050 0.65	2.310 4.000 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140 18.200 3.39 211.6 211.5 671.0 151.6 1091.6 643.4 1447 40.0 999999 37.50 0.0220 55.66	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU PB ZN CITY OF C SITE 9 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FCOLIF	N 102 102 102 100 100 100 100 100 100 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 833 370067 136577 22285 0.004 0.072 0.508 0.151 MEAN 0.879 0.194 3.66 0.328 22.4 13.2 7.3 294 673 332136 12155	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.024 0.425 0.825 0.146 8 M SEW SD 0.563 0.188 1.68 0.143 10.1 8.6 0.4 220 753 325481 17552	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002 0.002 0.001 0.003 ER #13 MINIMUM 0.105 0.060 0.96 0.050 3.5 0.5 6.7 82 1 11000 900	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.250 0.101 MEDIAN 0.780 0.129 3.53 0.360 22.0 12.8 7.3 210 538 200000 5550	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 999999 320000 0.027 4.300 4.770 0.740 MAXIMUN 2.470 0.740 8.08 0.500 43.0 26.8 7.9 845 3220 999999 63000
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FSTREP CR CU PB ZN EC CA MG NA K SO4 CL TALK PALK ECOLI AL CD FE	N 76 73 74 75 70 74 76 73 74 75 75 75 75 75 75 74 73 72 73 76 76 75 75 75 75 75 75 75 75 75 75 75 75 75	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 409 172 0.012 0.039 0.033 0.320 1.14 67.2 51.3 177.2 15.1 191.7 80.8 435 9.0 13672 1.18 0.0061 1.86	SD 0.388 0.500 0.490 7.1 2.1 4.4 413 1734 804 319 0.019 0.032 2.097 0.57 39.3 33.9 120.2 19.6 160.0 102.3 259 9.6 115432 4.42 0.0053 6.56	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0 0.001 0.000 0.0001 0.000 0.0001 0.200 3.4 7.0 16.2 2.8 0.6 4.7 85 0.0 0 0.001 0.000 0.0001 0.200 0.0001 0.000 0.0001 0.000 0.0001 0.000 0.0001 0.000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.00000000	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015 0.019 1.03 58.8 44.4 149.7 10.4 141.3 379 7.9 100 0.30 0.0050 0.65	2.310 4.000 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140 18.200 3.39 211.6 211.5 671.0 151.6 1091.6 643.4 1447 40.0 999999 37.50 0.0220 55.66	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU PB ZN CITY OF C SITE 9 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP	N 102 102 102 100 100 100 100 100 100 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 355 833 370067 136577 22285 0.004 0.072 0.508 0.151 MEAN 0.879 0.194 3.66 0.328 22.4 13.2 7.3 294 673 332136 12155 113891	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.004 0.425 0.825 0.146 8 M SEW SD 0.563 0.148 1.68 0.143 10.1 8.68 0.143 10.1 8.68 0.143 10.1 8.68 0.143 10.1 8.52 216332	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002 0.002 0.001 0.003 ER #13 MINIMUM 0.105 0.060 0.96 0.050 3.5 0.5 6.7 82 1 110000 900 8500	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.022 0.250 0.101 MEDIAN 0.780 0.102 3.53 0.360 22.0 12.8 7.3 210 538 200000 5550 58500	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 320000 0.027 4.300 4.770 0.740 MAXIMUN 2.470 0.740 MAXIMUN 2.470 0.740 8.08 0.500 43.0 26.8 7.9 845 3220 999999 63000 999999
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FSTREP CR CU PB ZN EC CA MG NA K SO4 CL TALK PALK ECOLI AL CD FE	N 76 73 74 75 70 74 76 73 74 75 75 75 75 75 75 74 73 72 73 76 76 75 75 75 75 75 75 75 75 75 75 75 75 75	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 409 172 0.012 0.039 0.033 0.320 1.14 67.2 51.3 177.2 15.1 191.7 80.8 435 9.0 13672 1.18 0.0061 1.86	SD 0.388 0.500 0.490 7.1 2.1 4.4 413 1734 804 319 0.019 0.032 2.097 0.57 39.3 33.9 120.2 19.6 160.0 102.3 259 9.6 115432 4.42 0.0053 6.56	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0 0.001 0.000 0.0001 0.000 0.0001 0.200 3.4 7.0 16.2 2.8 0.6 4.7 85 0.0 0 0.001 0.000 0.0001 0.200 0.0001 0.000 0.0001 0.000 0.0001 0.000 0.0001 0.000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.00000000	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015 0.019 1.03 58.8 44.4 149.7 10.4 141.3 379 7.9 100 0.30 0.0050 0.65	2.310 4.000 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140 18.200 3.39 211.6 211.5 671.0 151.6 1091.6 643.4 1447 40.0 999999 37.50 0.0220 55.66	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU PB ZN CITY OF C SITE 9 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP FSTREP FSTREP CR	N 102 102 102 102 100 100 100 100 100 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 833 370067 136577 22285 0.004 0.072 0.508 0.151 MEAN 0.879 0.194 3.66 0.328 22.4 13.2 7.3 294 673 332136 12155 113891 0.003	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.004 0.425 0.825 0.146 8M SEW SD 0.563 0.188 1.68 0.143 10.1 8.6 0.43 10.1 8.6 0.43 10.1 8.6 0.43 10.1 8.6 0.43 10.1 8.6 0.43 10.1 8.6 0.43 10.1 8.6 0.43 10.1 8.6 0.43 10.1 8.6 0.43 10.1 8.6 0.43 10.1 8.6 0.43 10.1 8.6 0.43 10.1 8.6 0.43 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002 0.001 0.003 WINIMUM 0.105 0.000 0.001 0.003 ER #13 MINIMUM 0.105 0.060 0.96 0.050 3.5 0.5 6.7 82 1 11000 900 8500 0.002	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.022 0.250 0.101 MEDIAN 0.780 0.129 3.53 0.360 22.0 12.8 7.3 210 538 200000 5550 58500 0.002	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 320000 0.027 4.300 4.770 0.740 MAXIMUN 2.470 0.940 8.08 0.500 43.0 26.8 7.9 845 3220 999999 63000 999999 63000
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FSTREP CR CU PB ZN EC CA MG NA K SO4 CL TALK PALK ECOLI AL CD FE	N 76 73 74 75 70 74 76 73 74 75 75 75 75 75 75 74 73 72 73 76 76 75 75 75 75 75 75 75 75 75 75 75 75 75	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 409 172 0.012 0.039 0.033 0.320 1.14 67.2 51.3 177.2 15.1 191.7 80.8 435 9.0 13672 1.18 0.0061 1.86	SD 0.388 0.500 0.490 7.1 2.1 4.4 413 1734 804 319 0.019 0.032 2.097 0.57 39.3 33.9 120.2 19.6 160.0 102.3 259 9.6 115432 4.42 0.0053 6.56	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0 0.001 0.000 0.0001 0.000 0.0001 0.200 3.4 7.0 16.2 2.8 0.6 4.7 85 0.0 0 0.001 0.000 0.0001 0.200 0.0001 0.000 0.0001 0.000 0.0001 0.000 0.0001 0.000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.00000000	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015 0.019 1.03 58.8 44.4 149.7 10.4 141.3 379 7.9 100 0.30 0.0050 0.65	2.310 4.000 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140 18.200 3.39 211.6 211.5 671.0 151.6 1091.6 643.4 1447 40.0 999999 37.50 0.0220 55.66	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU PB ZN CITY OF C SITE 9 TP DP TN NH3 TOC BOD PH TNS NH3 TOC BOD PH TNS TSS TCOLIF FSTREP CR CU CU CU CU CU CU CU CU CU CU CU CU CU	N 102 102 102 102 100 100 100 100 100 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 833 370067 136577 22285 0.004 0.151 MEAN 0.879 0.194 3.66 0.328 22.4 13.2 7.3 332136 12155 113891 0.003 0.601	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.045 0.825 0.146 8 M SEW SD 0.563 0.188 1.68 0.143 10.1 8.6 0.143 10.1 8.6 0.143 10.1 8.6 0.143 10.1 8.6 0.73	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002 0.001 0.003 ER #13 MINIMUM 0.105 0.060 0.096 0.050 3.5 0.5 6.7 82 1 11000 900 8500 0.002 0.003	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.022 0.250 0.101 MEDIAN 0.780 0.129 3.53 0.360 22.0 12.8 7.3 210 538 200000 5550 58500 0.002 0.036	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 320000 0.027 4.300 4.770 0.740 MAXIMUN 2.470 0.940 8.08 0.500 43.0 26.8 7.9 845 3220 999999 63000 999999 0.011 0.390
SITE 2.5 TP NIT NH3 TEMP DO BOD PH TSS TCOLIF FSTREP CR CU PB ZN EC CA MG NA K SO4 CL TALK PALK ECOLI AL CD FE	N 76 73 74 75 70 74 76 73 74 75 75 75 75 75 75 74 73 72 73 76 76 75 75 75 75 75 75 75 75 75 75 75 75 75	MEAN 0.372 0.498 0.384 9.3 6.8 4.3 8.4 409 172 0.012 0.039 0.033 0.320 1.14 67.2 51.3 177.2 15.1 191.7 80.8 435 9.0 13672 1.18 0.0061 1.86	SD 0.388 0.500 0.490 7.1 2.1 4.4 413 1734 804 319 0.019 0.032 2.097 0.57 39.3 33.9 120.2 19.6 160.0 102.3 259 9.6 115432 4.42 0.0053 6.56	0.010 0.015 0.025 -0.5 1.4 1.0 7.5 1 5 0 0 0 0.001 0.000 0.0001 0.000 0.0001 0.200 3.4 7.0 16.2 2.8 0.6 4.7 85 0.0 0 0.001 0.000 0.0001 0.200 0.0001 0.000 0.0001 0.000 0.0001 0.000 0.0001 0.000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.0000000 0.00000000	0.255 0.500 0.250 10.0 6.8 3.0 8.4 14 550 105 56 0.003 0.014 0.015 0.019 1.03 58.8 44.4 149.7 10.4 141.3 379 7.9 100 0.30 0.0050 0.65	2.310 4.000 4.000 20.5 12.2 27.1 9.5 3581 8500 4000 1700 0.120 0.718 0.140 18.200 3.39 211.6 211.5 671.0 151.6 1091.6 643.4 1447 40.0 999999 37.50 0.0220 55.66	SITE 8 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP CR CU PB ZN CITY OF C SITE 9 TP DP TN NH3 TOC BOD PH TDS TSS TCOLIF FSTREP FSTREP FSTREP CR	N 102 102 102 102 100 100 100 100 100 100	MEAN 0.826 0.158 6.49 0.526 24.2 13.0 7.5 833 370067 136577 22285 0.004 0.072 0.508 0.151 MEAN 0.879 0.194 3.66 0.328 22.4 13.2 7.3 294 673 332136 12155 113891 0.003	SD 0.712 0.111 2.93 0.409 17.2 12.4 0.4 234 1107 368481 284683 47662 0.004 0.425 0.825 0.146 8M SEW SD 0.563 0.188 1.68 0.143 10.1 8.6 0.43 10.1 8.6 0.43 10.1 8.6 0.43 10.1 8.6 0.43 10.1 8.6 0.43 10.1 8.6 0.43 10.1 8.6 0.43 10.1 8.6 0.43 10.1 8.6 0.43 10.1 8.6 0.43 10.1 8.6 0.43 10.1 8.6 0.43 10.1 8.6 0.43 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.	0.075 0.027 2.58 0.020 6.4 0.6 6.2 8 2 10 69 10 0.002 0.001 0.003 WINIMUM 0.105 0.000 0.001 0.003 ER #13 MINIMUM 0.105 0.060 0.96 0.050 3.5 0.5 6.7 82 1 11000 900 8500 0.002	0.700 0.134 5.70 0.430 18.1 10.7 7.5 284 533 290000 17000 7800 0.002 0.022 0.250 0.101 MEDIAN 0.780 0.129 3.53 0.360 22.0 12.8 7.3 210 538 200000 5550 58500 0.002	4.300 0.960 19.32 2.200 95.0 76.0 8.5 1079 6950 999999 320000 0.027 4.300 4.770 0.740 MAXIMUN 2.470 0.740 8.08 0.500 43.0 26.8 7.9 845 3220 999999 63000 999999 0.011

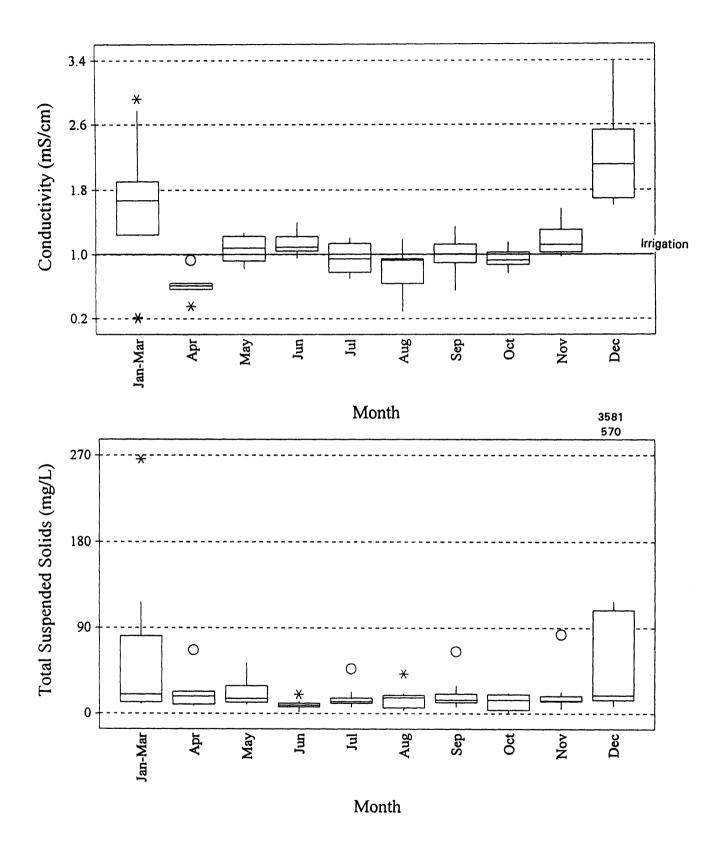
Table 3 Summary Statistics for Each Location


×9 - 1

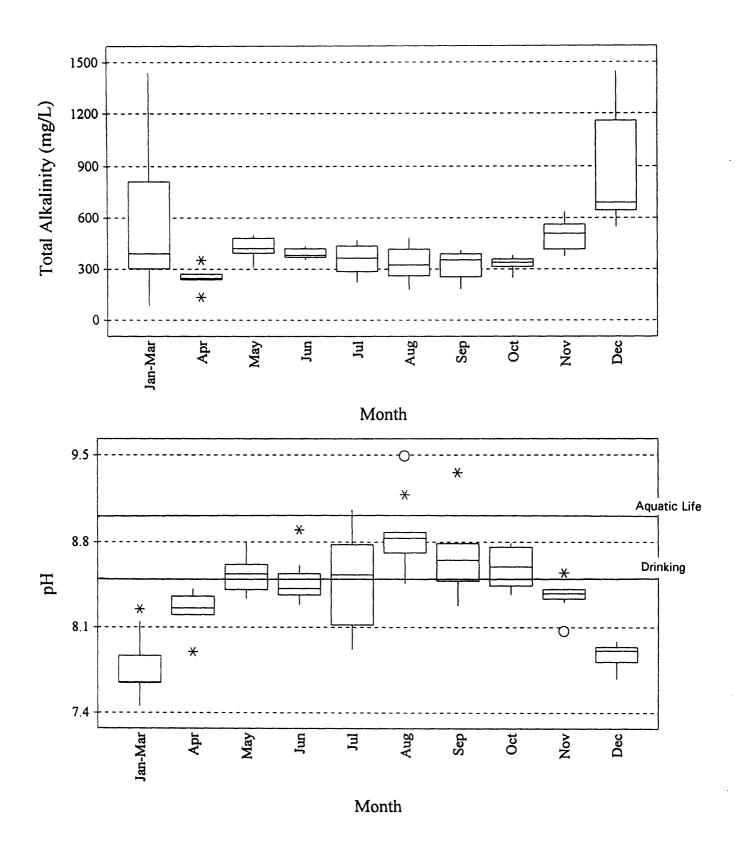
NOSE CREE SITE 3	N	MEAN	SD	MINIMUM	MEDIAN	MAXIMUM	NOSE CRE SITE 10	N	MEAN	SD		MEDIAN	MAXIMUM
TP	29	0.261	0.119	0.082	0.250	0.470	TP	112	0.276	0.241	0.045	0.193	1.360
DP	30	0.206	0.101	0.063	0.198	0.402	DP	100	0.108	0.135	0.005	0.089	0.974
TN	30	1.56	0.50	0.65	1.62	3.05	TN	100	2.92	1.61	0.62	2.48	10.98
NIT	29	0.038	0.081	0.002	0.013	0.380	NIT	96	1.246	0.635	0.018	1.200	3.850
NH3	29	0.154	0.154	0.006	0.100	0.670	NH3	96	0.276	0.368	0.001	0.185	2.410
TOC	28	19.2	3.6	11.8	20.2	26.0	TOC	82	13.7	4.9	5.0	12.6	40.0
TEMP	14	10.8	2.5	7.0	11.0	15.0	TEMP	30	9.7	6.9	-0.1	12.2	21.3
DO	20	6.1	1.8	3.0	5.6	9.7	DO	40	8.3	2.7	4.1	8.2	14.8
BOD	30	4.0	2.6	0.8	3.3	13.2	BOD	98	6.9	4.6	0.4	5.0	22.0
PH	27	8.2	0.5	7.4	8.2	9.2	PH	95	7.7	0.3	7.2	7.6	8.4
TDS	29	522	109	314	491	744	TDS	85	535	144	195	527	1050
TSS	28	24	26	2	13	101	TSS	106	109	203	0	50	1754
TCOLIF	31	889	1228	16	390	5200	TCOLIF	74	26860	46440	40	8100	250000
FCOLIF	31	446	676	0	204	2800	FCOLIF	77	1970	3877	10	590	28000
FSTREP	23	321	346	16	172	1400	FSTREP	50	3752	75 7 2	36	363	33000
CR	30	0.003	0.002	0.002	0.002	0.010	CR	82	0.004	0.011	0.001	0.002	0.100
CU	30	0.007	0.008	0.001	0.004	0.036	CU	84	0.008	0.007	0.001	0.005	0.032
PB	30	0.198	1.064	0.001	0.002	5.830	PB	84	0.059	0.139	0.001	0.014	0.680
ZN	30	0.041	0.132	0.001	0.012	0.730	ZN	94	0.031	0.028	0.001	0.022	0.140
							EC	35	0.83	0.38	0.21	0.78	2.06
							CA	24	61.2	17.0	25.3	58.2	103.0
				NCE WITH W			MG	25	39.7	12.0	13.3	38.7	65.5
SITE 4	N	MEAN	SD			MAXIMUM	NA	25	107.7	72.2	36.8	85.0	300.0
TP	39	0.248	0.095	0.080	0.265	0.460	К	25	9.4	8.9	4.3	5.9	36.8
DP	39	0.204	0.082	0.080	0.226	0.345	SO4	25	166.1	44.4	62.0	173.0	232.0
TN	39	1.44	0.53	0.56	1.25	2.92	CL	25	81.5	101.6	15.0	42.0	360.0
NIT	39	0.089	0.239	0.002	0.010	1.400	HCO3	23	319.9	78.9	154.8	322.0	519.0
NH3	39	0.116	0.123	0.002	0.080	0.460	CO3	21	1.2	4.3	0.3	0.3	19.9
TOC	39	18.0	4.4	12.0	18.0	35.0	TALK	25	262	62	127	264	426
TEMP	19	11.4	2.3	6.0	11.0	15.0	PALK	23	0.8	3.5	0.0	0.1	16.6
DO BOD	19	6.6	0.9	4.6	6.8	8.6	HARD	24	316	86	118	308	527
PH	40	2.9	1.8	0.4	2.6	11.8	TURB	23	41	44	2	35	219
	39	8.0	0.3	7.3	8.0	8.6	TKN	24	1.7	1.6	0.3	1.2	6.8
TDS	39	477	117	60	477	726	DIC	13	57.3	13.3	24.5	59.0	74.0
TSS TCOLIF	38	10	9	1	7	46	DOC	15	11.1	5.5	4.8	9.5	25.0
FCOLIF	33	933	1351	10	470	6600	SI	17	4.9	4.1	0.0	3.5	15.2
FCOLIF	34	114	176	4	56	780	PHENOLIC		0.005	0.005	0.001	0.003	0.017
CR	27 36	289	276	12	244	1200	AL	13	0.54	0.70	0.01	0.21	2.57
CU		0.002	0.002	0.002	0.002	0.008	FE	25	0.64	0.82	0.00	0.40	3.89
PB	36	0.008	0.009	0.001	0.004	0.040	HG	19	0.042	0.013	0.020	0.050	0.050
PB ZN	36	0.097	0.383	0.001	0.003	1.700	MN	16	0.087	0.032	0.047	0.077	0.170
LIN	36	0.017	0.034	0.001	0.008	0.200	NI	16	0.005	0.007	0.001	0.002	0.024

Table 3 cont. Summary Statistics for Each Location

NF 1


Box and Whisker Plots						
LEGEND						
Alberta Ambient Surface Water Quality Interim Guideline - Surface Water Canadian Water Quality Guidelines - Irrigation, Livestock, Recreation, Drinking, Aquatic Life						
us Airdrie	- 1 Nose Creek above Airdrie					
ds Airdrie	- 2 Nose Creek below Airdrie					
Nose 564	- 3 Nose Creek near City Limits (Hwy 564)					
Nose usW	- 4 Nose Creek above confluence with West Nose Creek					
West 24	- 6 West Nose Creek at 24 Street NW					
West usN	- 7 West Nose Creek above confluence with Nose Creek					
Sewer27	- 8 City of Calgary Storm Sewer #27 (residential)					
Sewer13	- 9 City of Calgary Storm Sewer #13 (commercial)					
Nose Mouth	- 10 Nose Creek near the Mouth					
^ storm	storm event data for previous site					

Water quality guidelines are indicated by a horizontal line at the guideline value. Data values above the horizontal line violate the guideline and data values below the horizontal line are acceptable in relation to the guideline.


Outliers are extreme values which do not "fit' statistically into the distribution of the "typical" data values (box and whiskers).

> The median is the middle value. Half of the data are greater and half of the data are less than the median value.

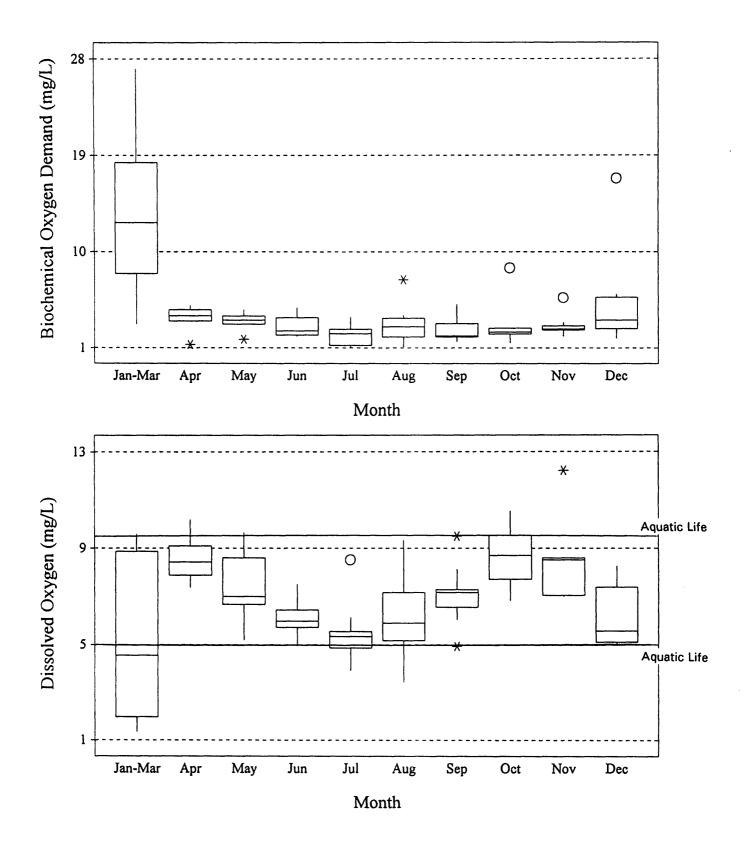

и 1

Figure 2 Monthly Variability for Nose Creek at the City Limits

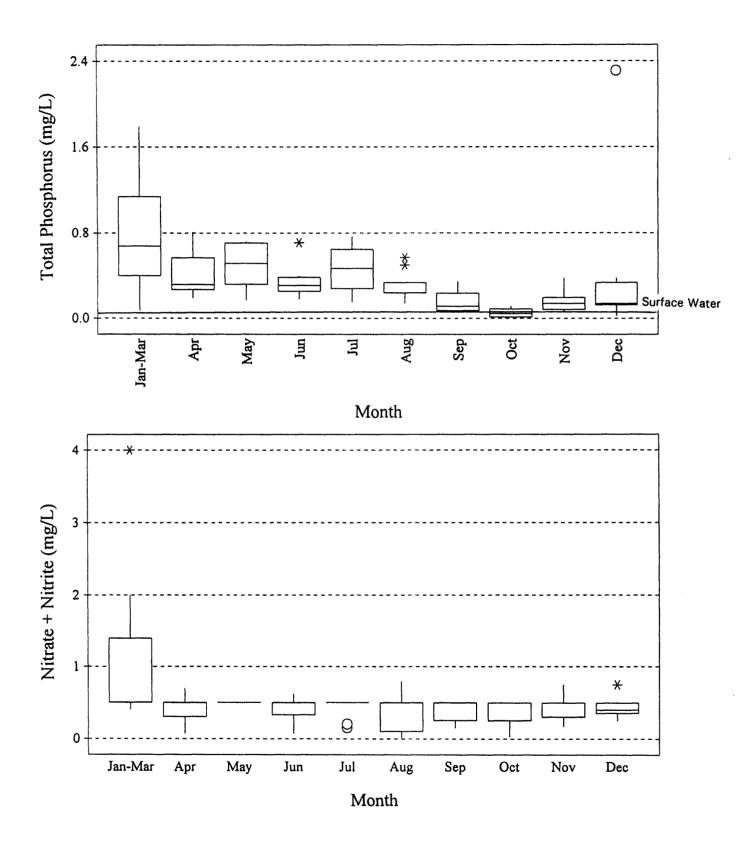

91-1

Figure 2 cont. Monthly

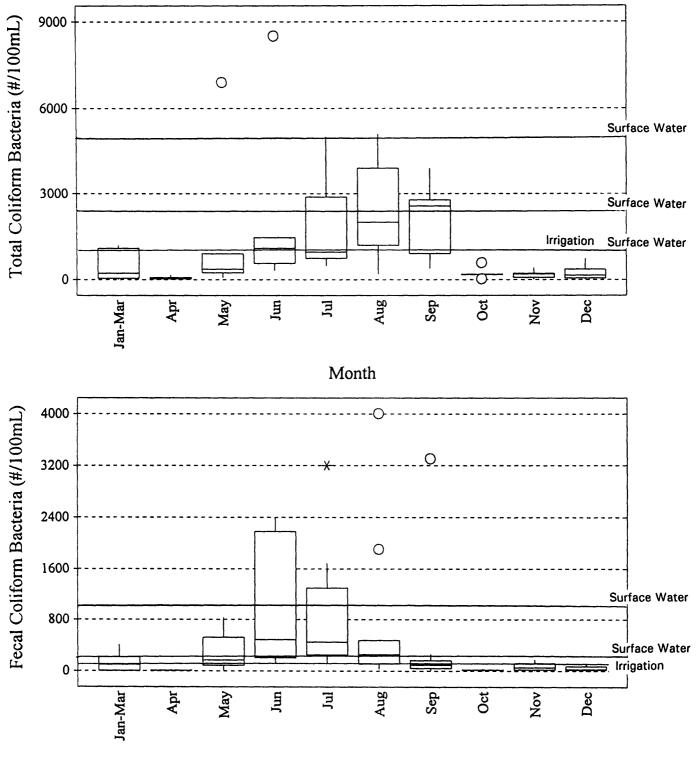
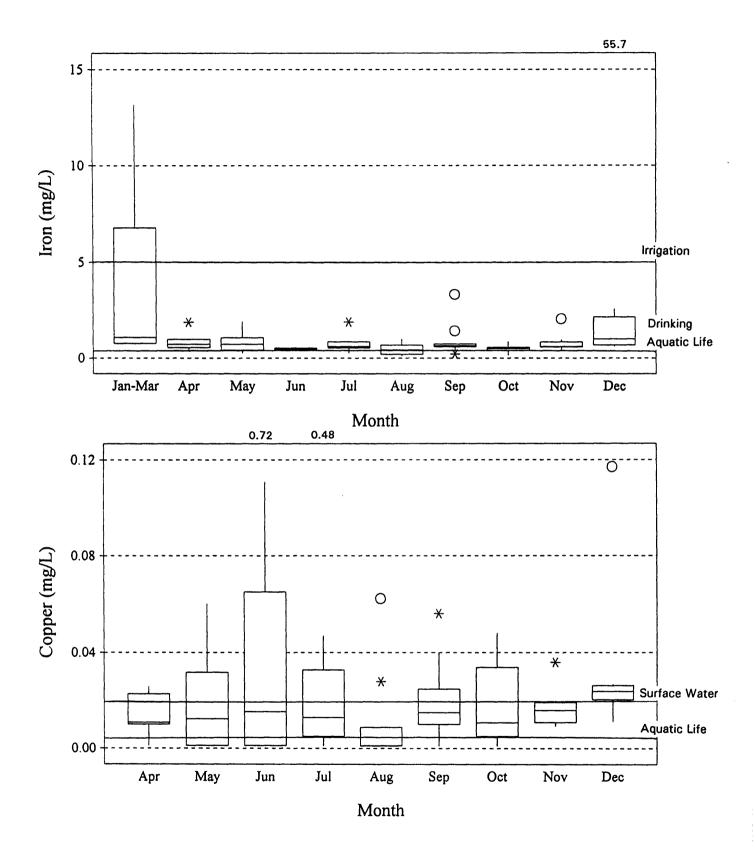

 $\mathbf{u} \in \mathbf{I}$

Figure 2 cont. Monthly

ar i


Figure 2 cont. Monthly

94 I

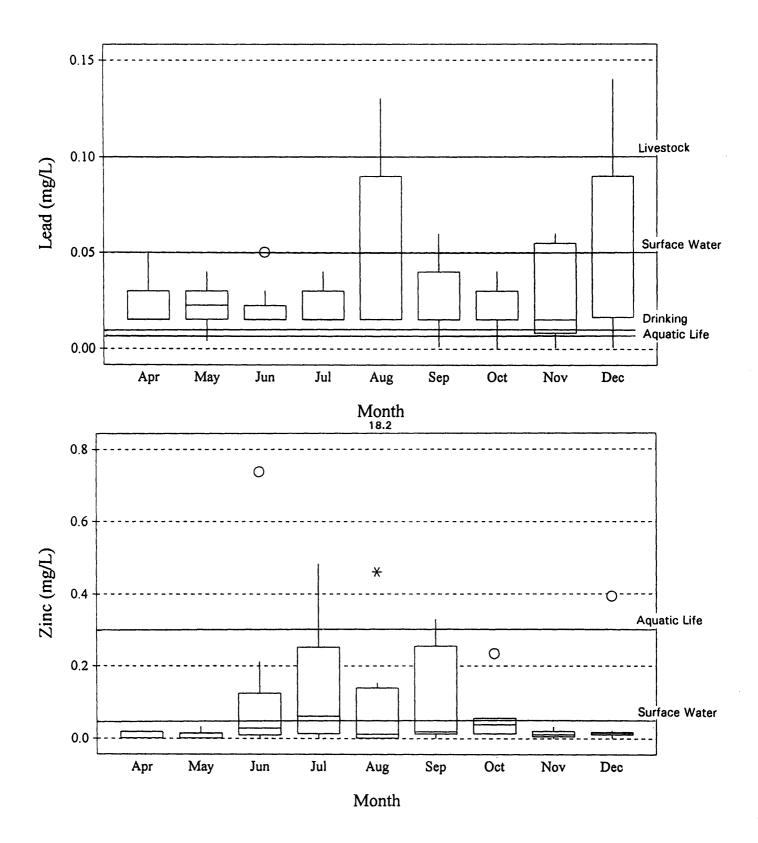

Month

Figure 2 cont. Monthly

w I

Figure 2 cont. Monthly

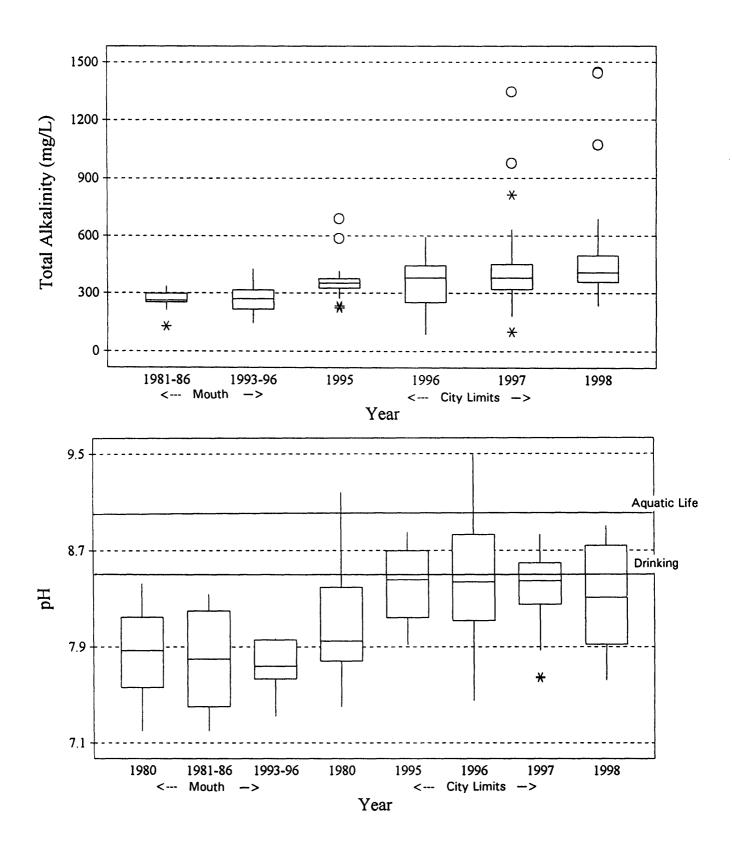

14 I

Figure 2 cont. Monthly

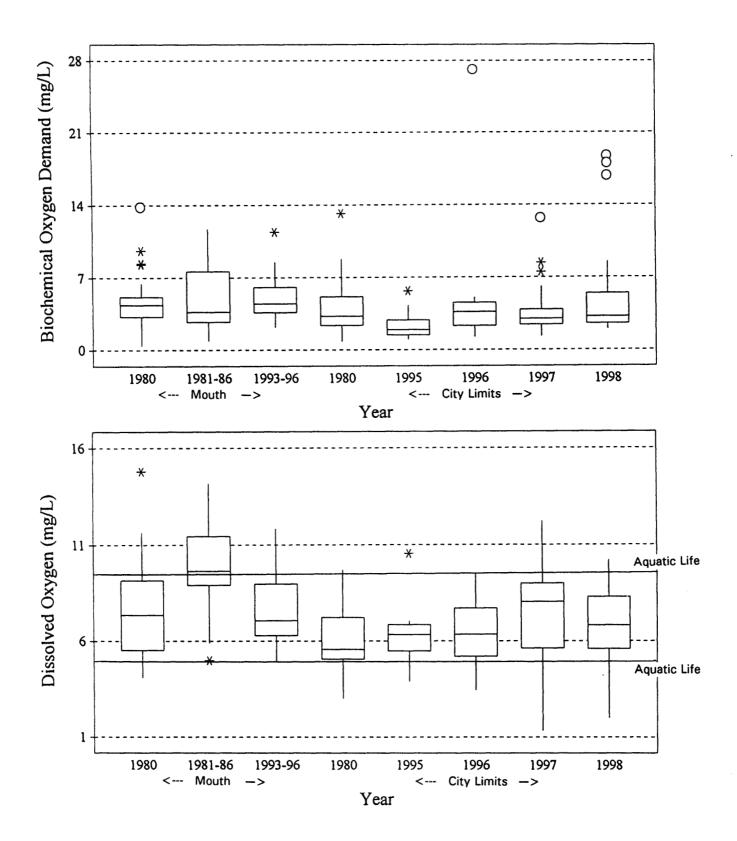

rr = 1

Figure 3 Annual Variability for Nose Creek at the Mouth and City Limits

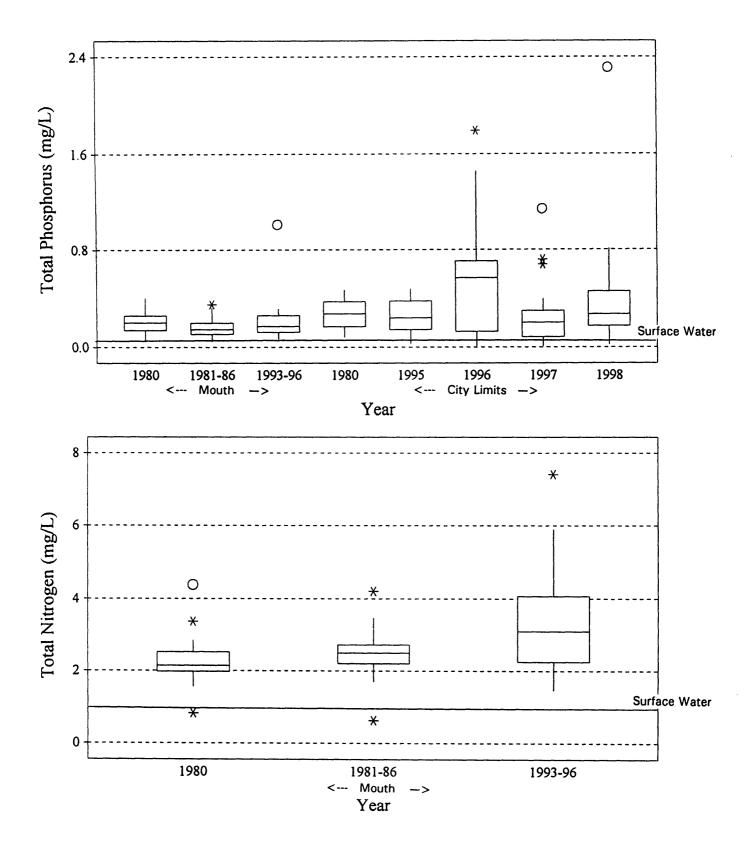

et i I

Figure 3 cont. Annual

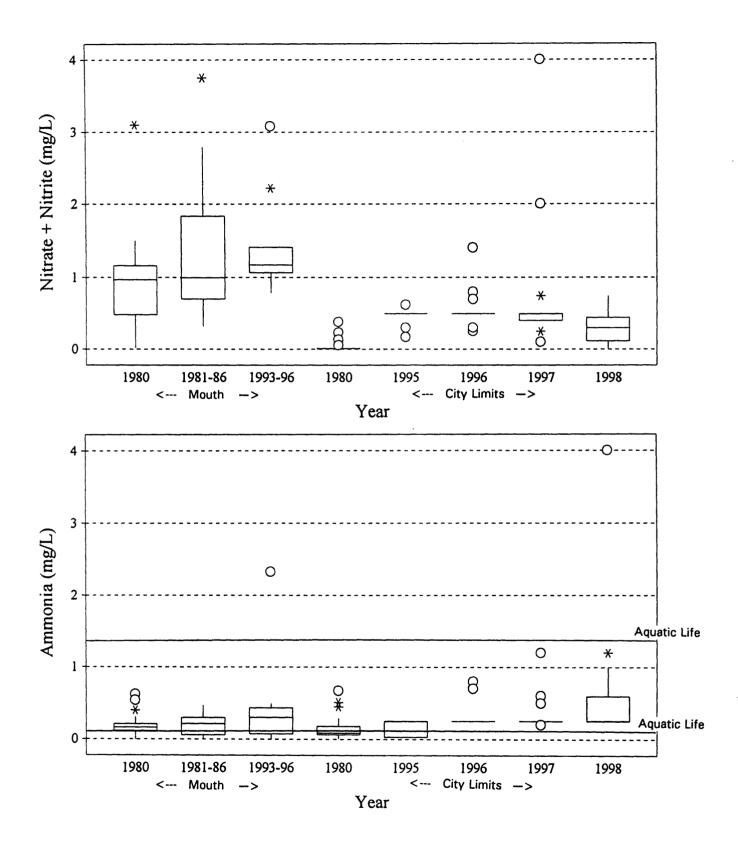

wi - 1

Figure 3 cont. Annual

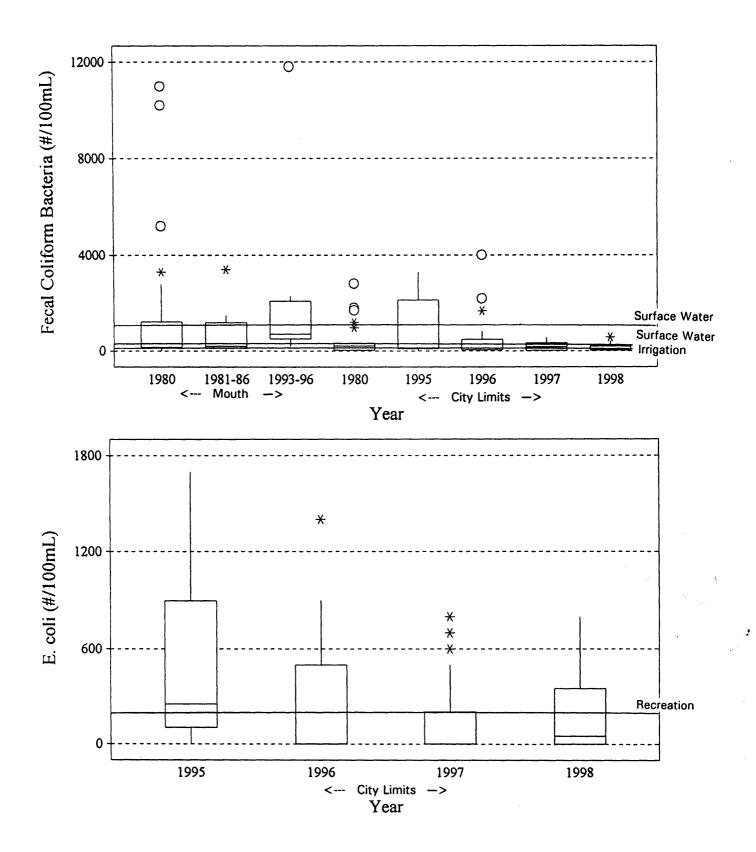

40-1

Figure 3 cont. Annual

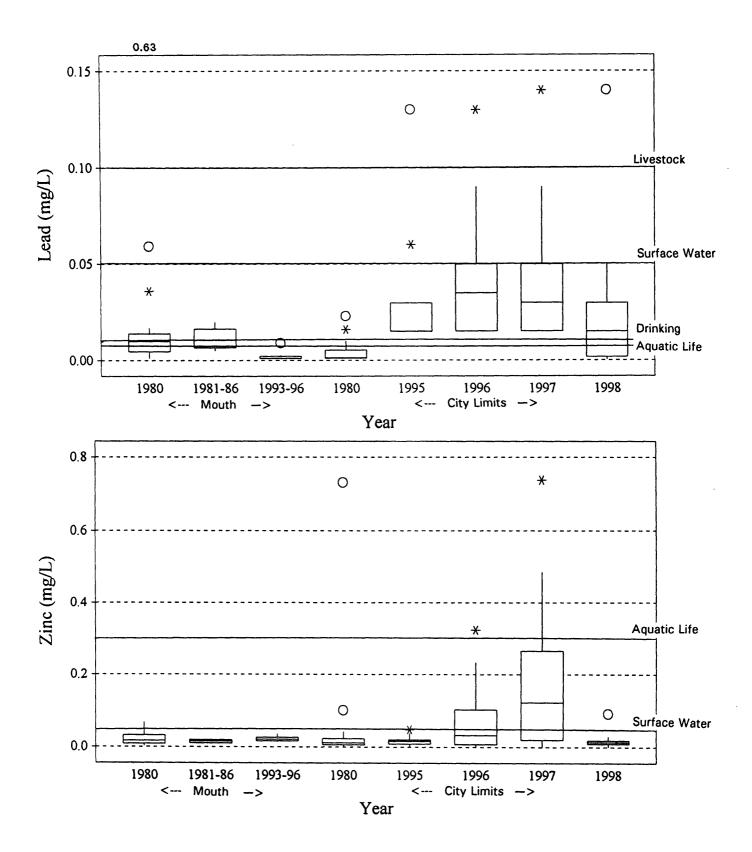

H (

Figure 3 cont. Annual

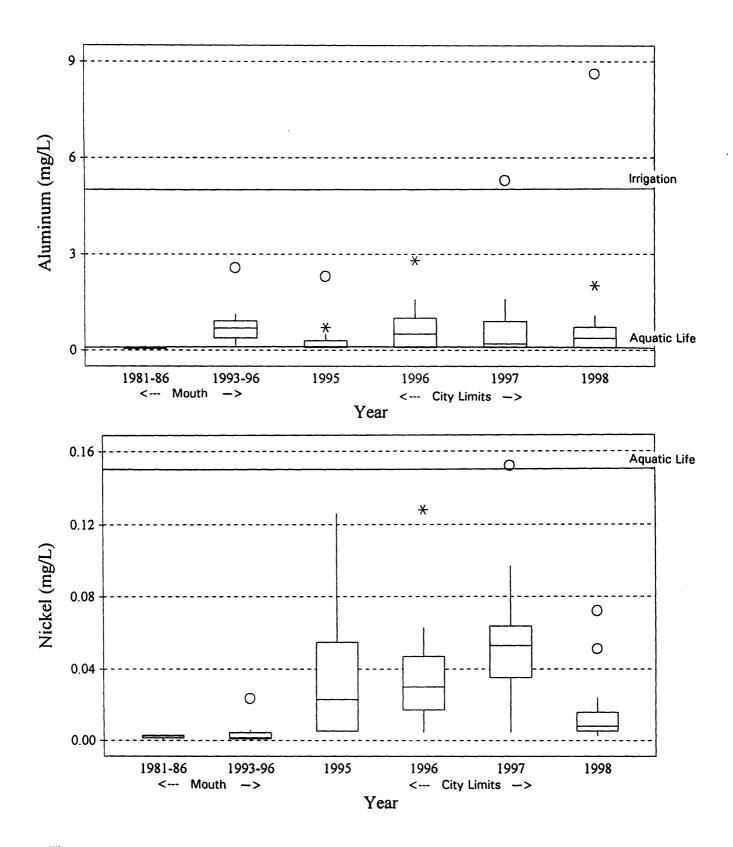

98 ° 1

Figure 3 cont. Annual

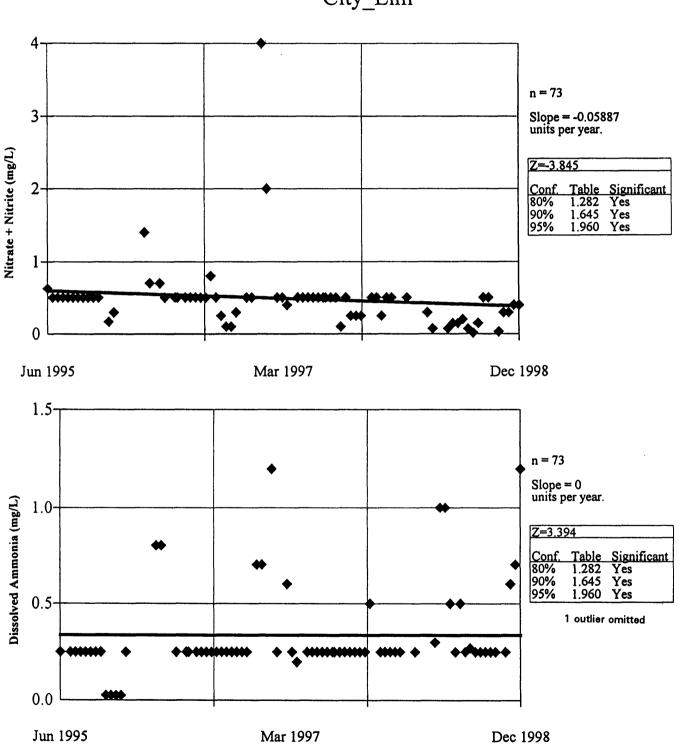
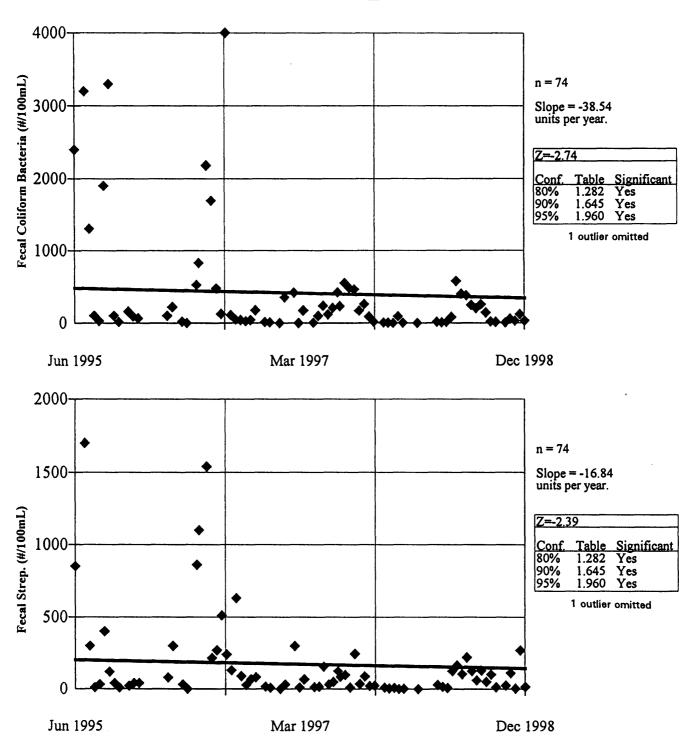

 $\mathbf{u} \in \mathbf{I}$

Figure 3 cont. Annual

He I

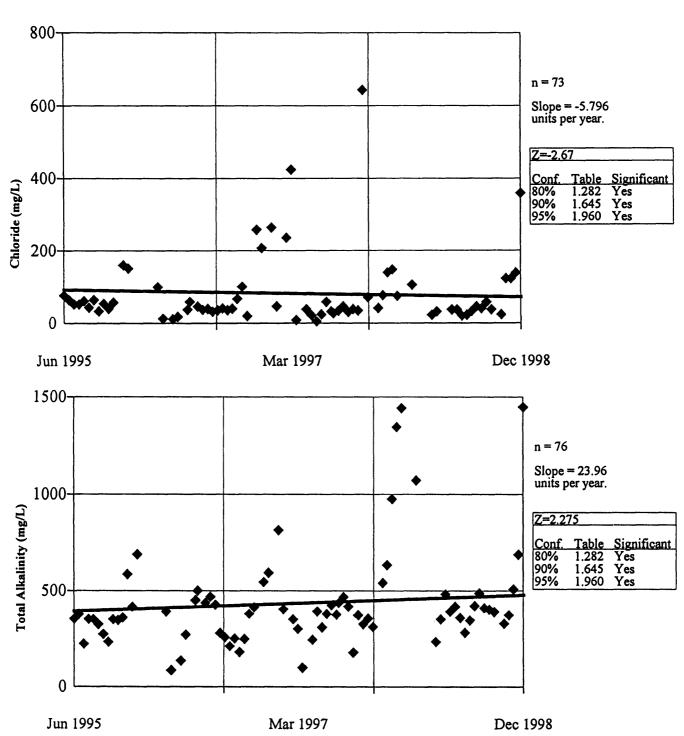
Figure 3 cont. Annual



SEASONAL KENDALL SLOPE ESTIMATOR City_Lim

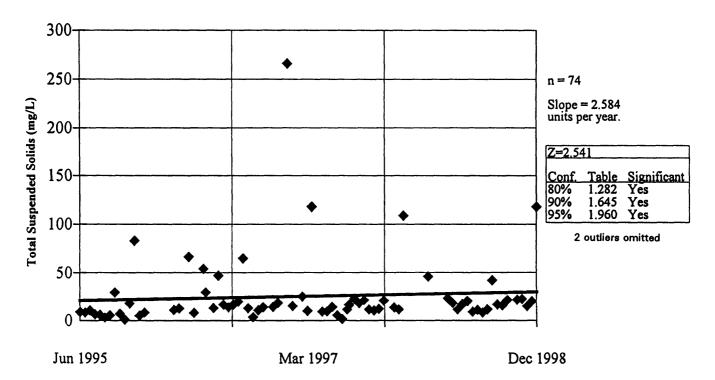
1 · 16

Figure 4 Trend Graphs for Nose Creek at the City Limits


¥ :

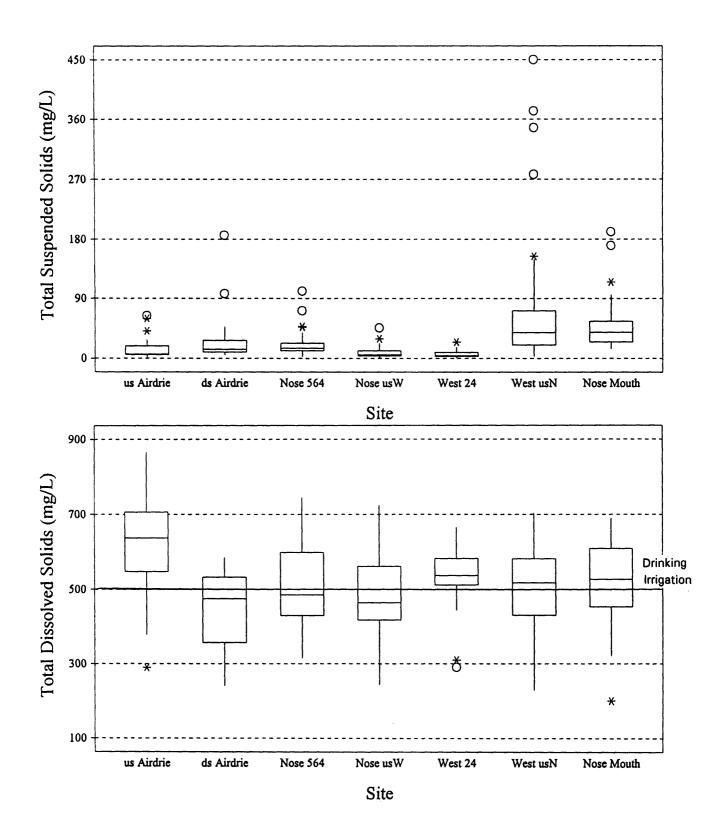
SEASONAL KENDALL SLOPE ESTIMATOR City_Lim

ni - i


Figure 4 cont. Trends

SEASONAL KENDALL SLOPE ESTIMATOR City_Lim

99 F F


Figure 4 cont. Trends

SEASONAL KENDALL SLOPE ESTIMATOR City_Lim


 $19 \leq 1$

Figure 4 cont. Trends

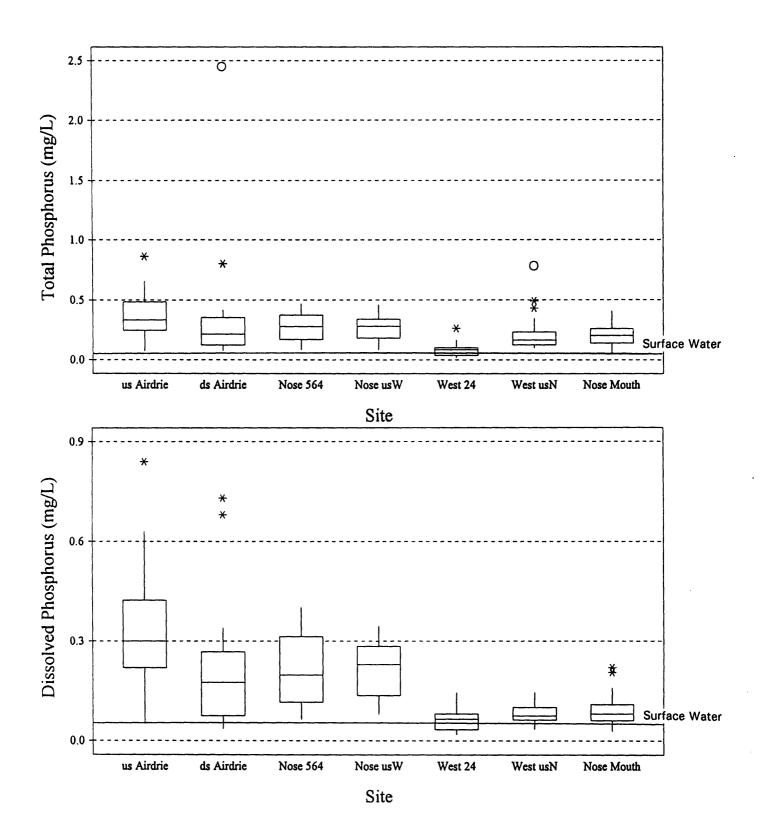

н - 1

Figure 5 Comparison of 1980s Data from all Locations

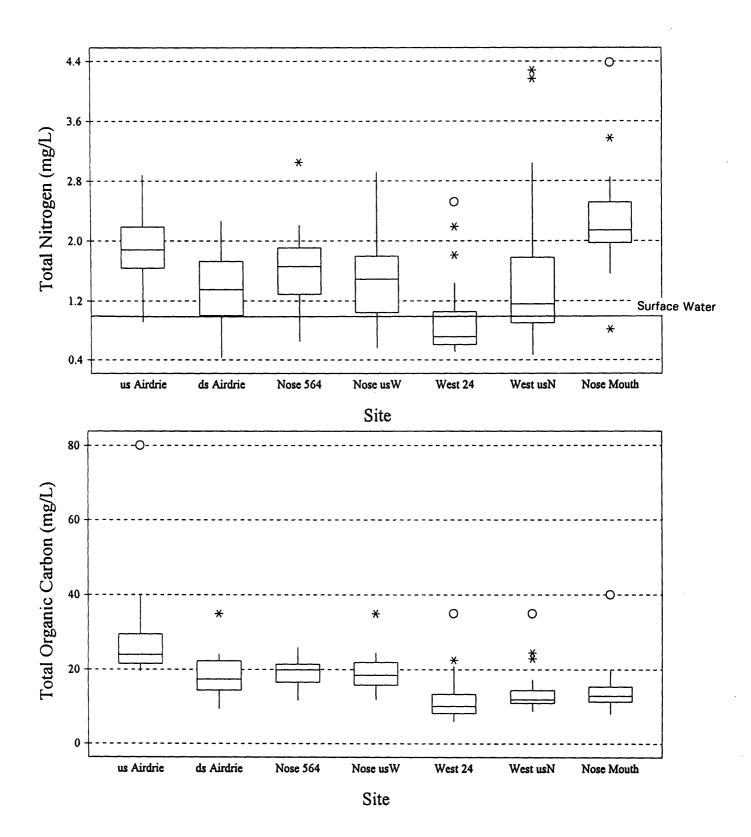

81.1

Figure 5 cont. Site Comparison

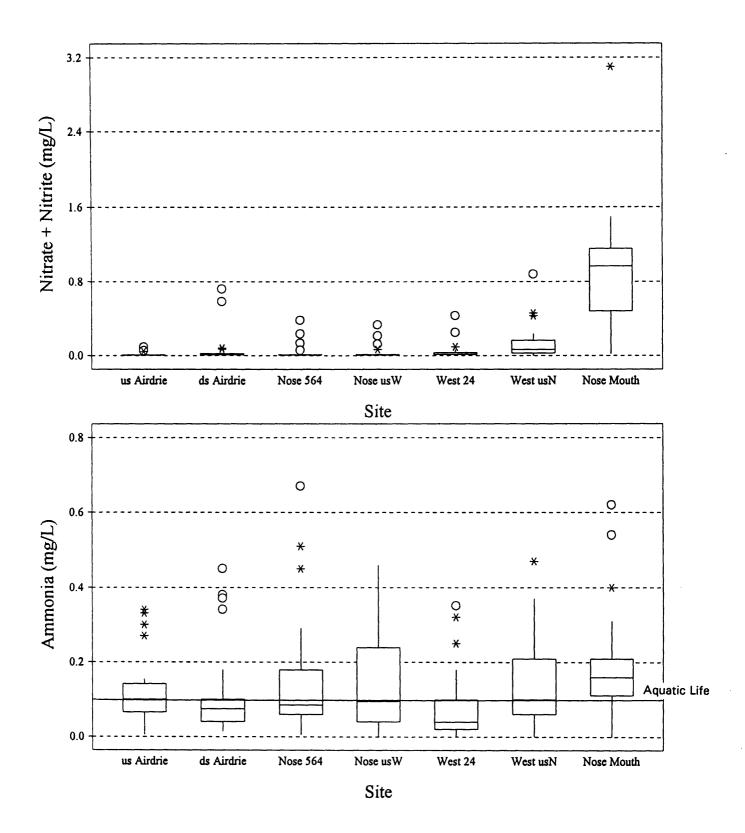

N1 - 1

Figure 5 cont. Site Comparison

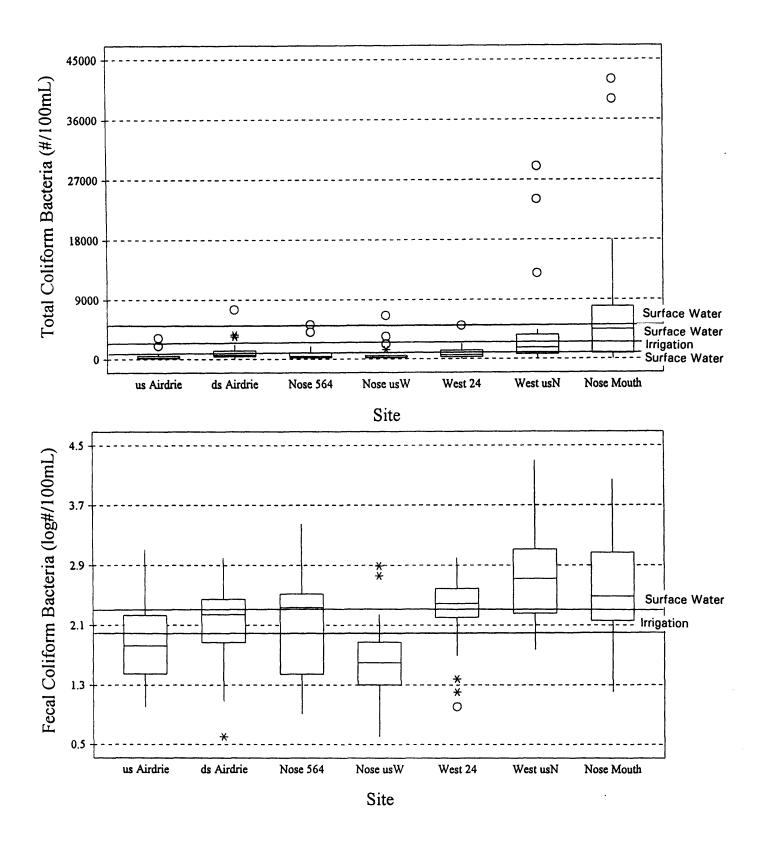

ad - t

Figure 5 cont. Site Comparison

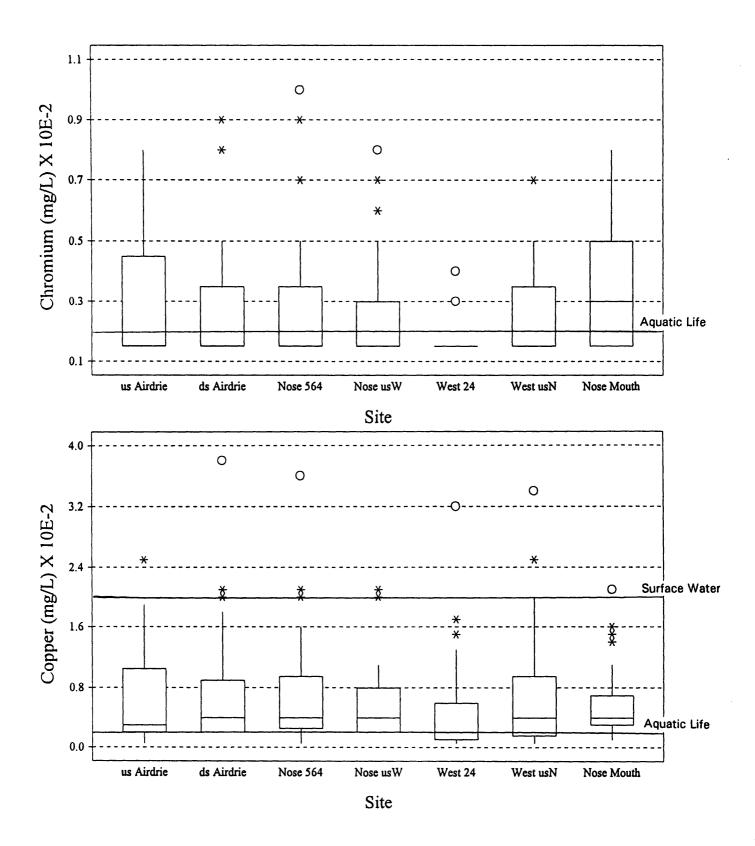

- #8 - 1

Figure 5 cont. Site Comparison

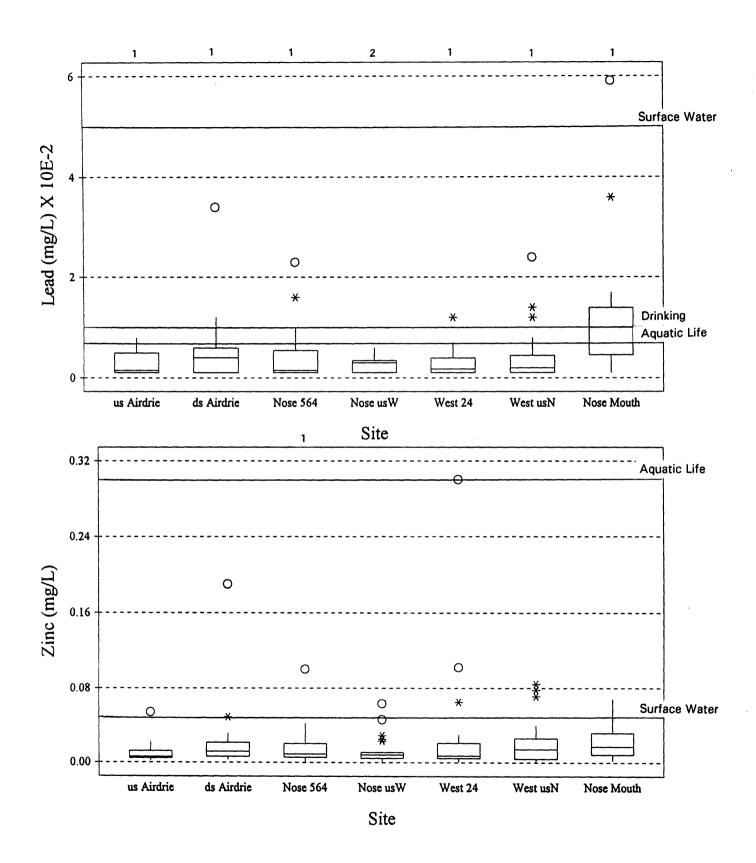

 $\mathbf{H} \in \mathbf{I}$

Figure 5 cont. Site Comparison

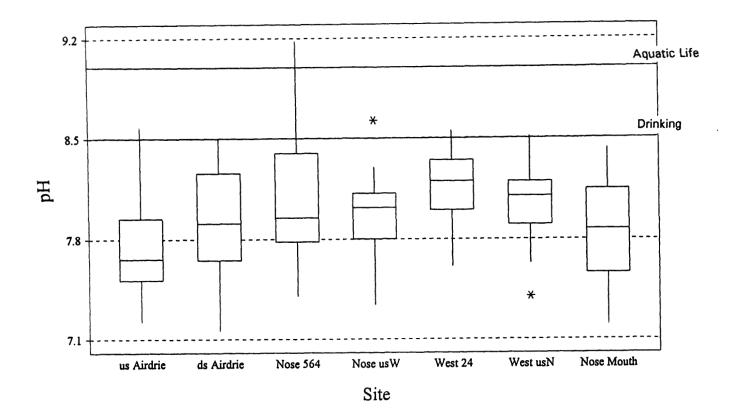

 $\sim t \leq 1$

Figure 5 cont. Site Comparison

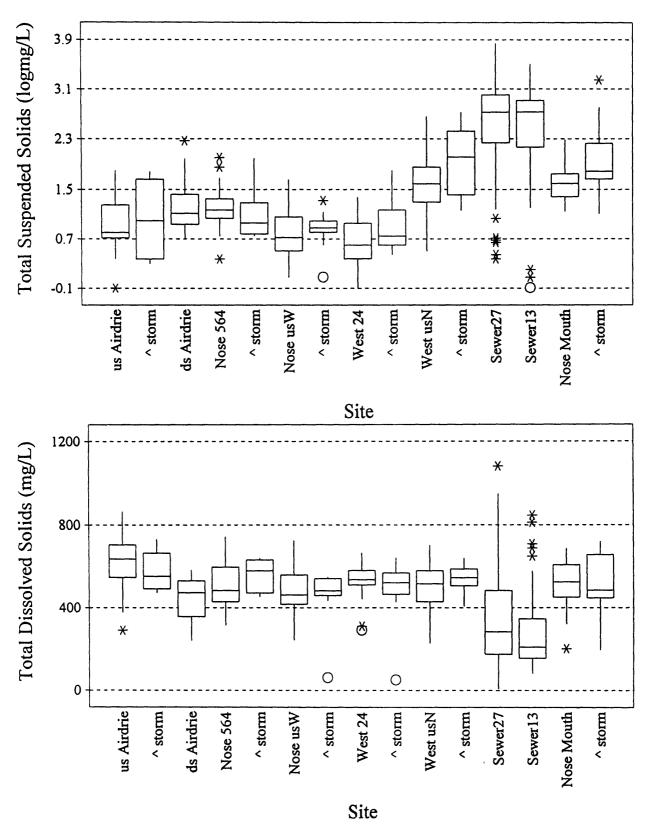

94 I

Figure 5 cont. Site Comparison

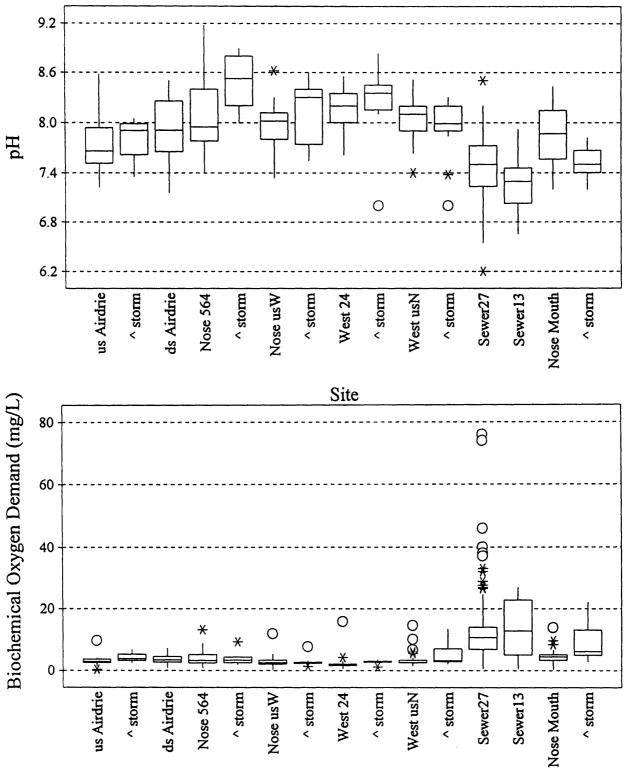
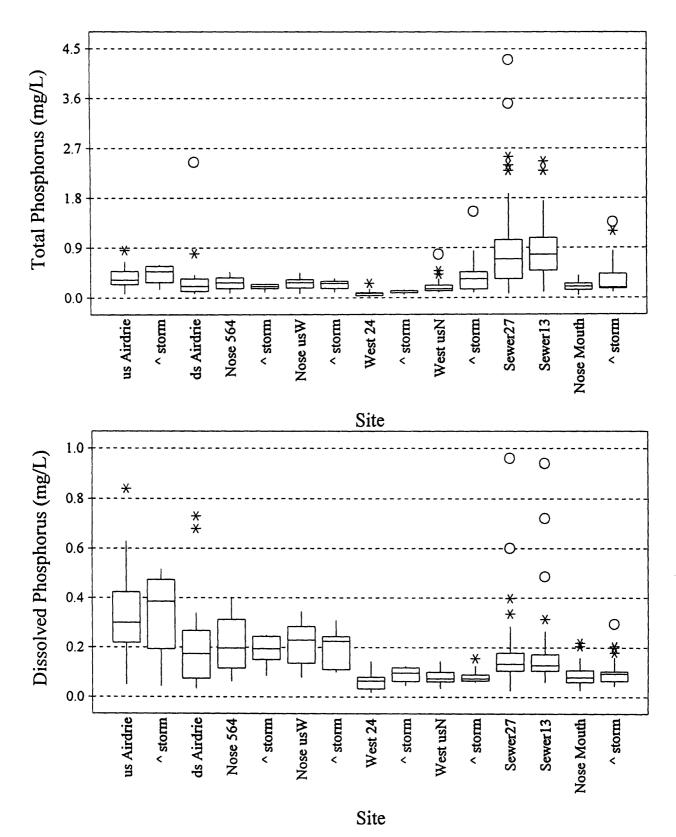

~ 1

Figure 5 cont. Site Comparison

 $a \cdot 1$


Figure 6 Data from 1980s showing Storm Event and Sewer Data

91 I I

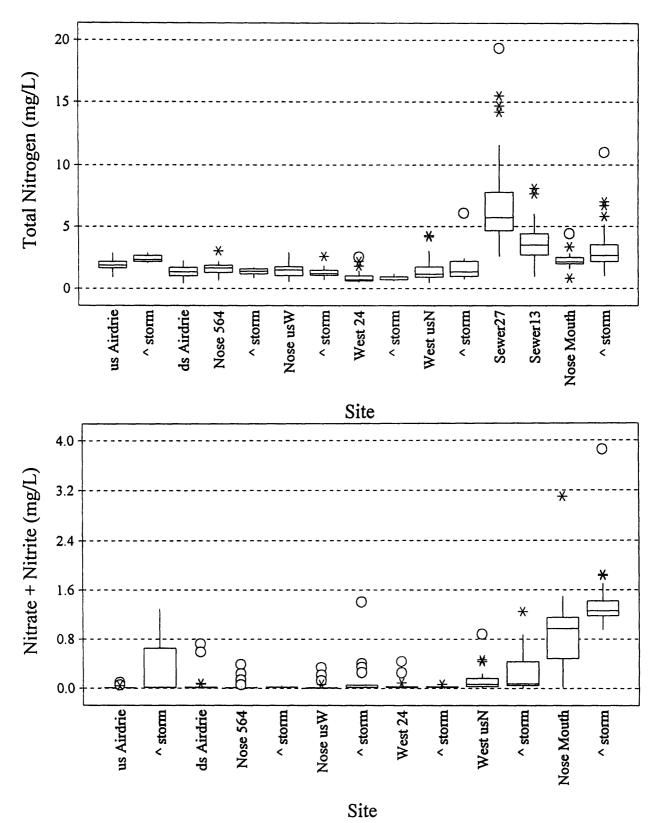

Site

Figure 6 cont. Storm

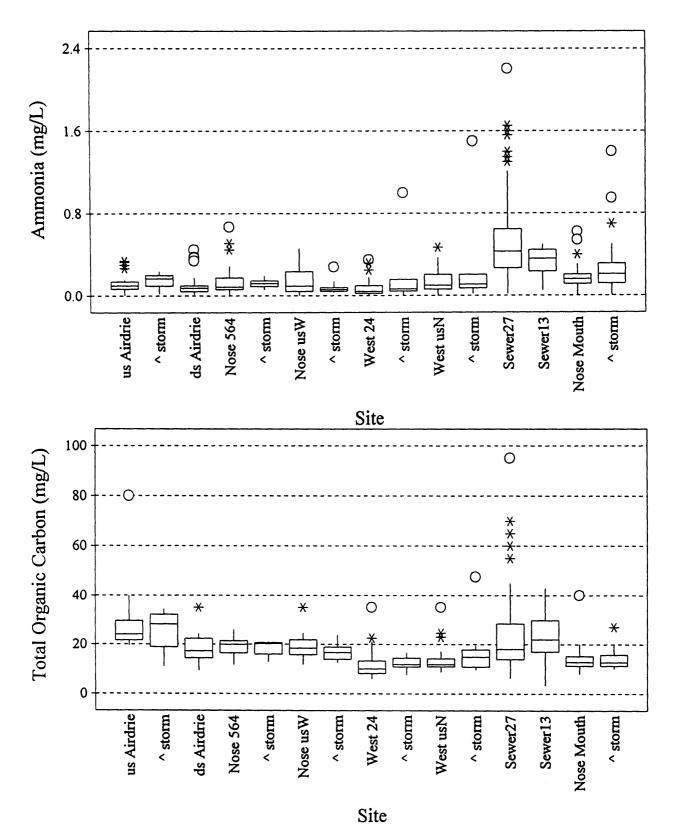

 ${\bf M} \in {\bf I}$

Figure 6 cont. Storm

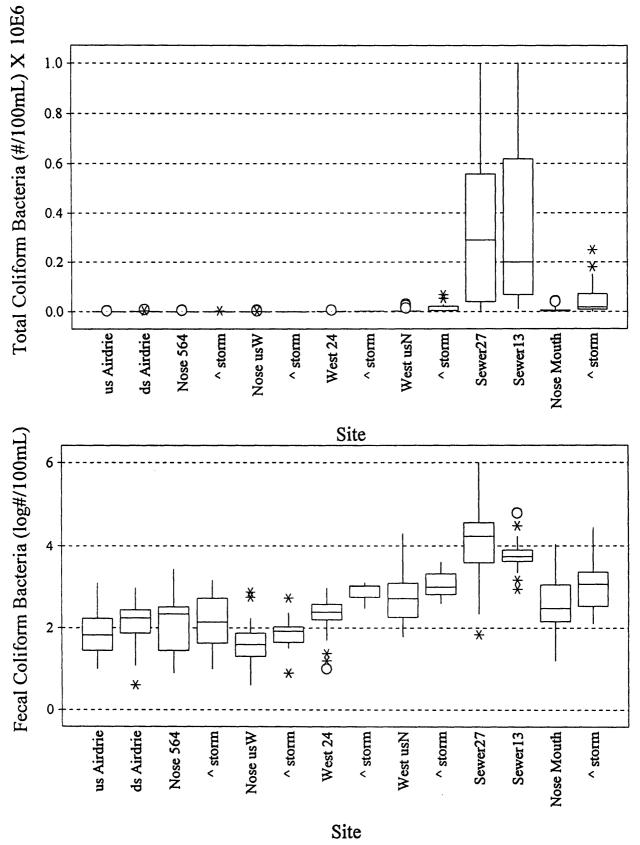

88 C 1

Figure 6 cont. Storm

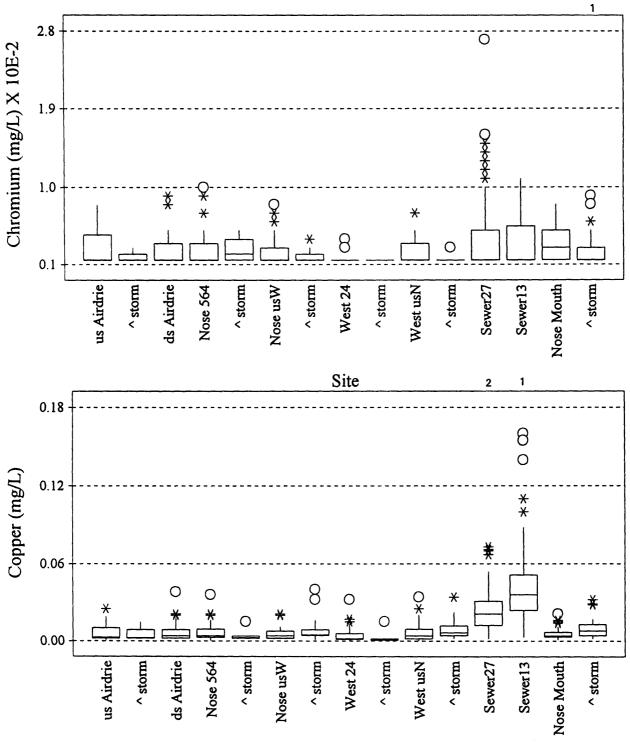
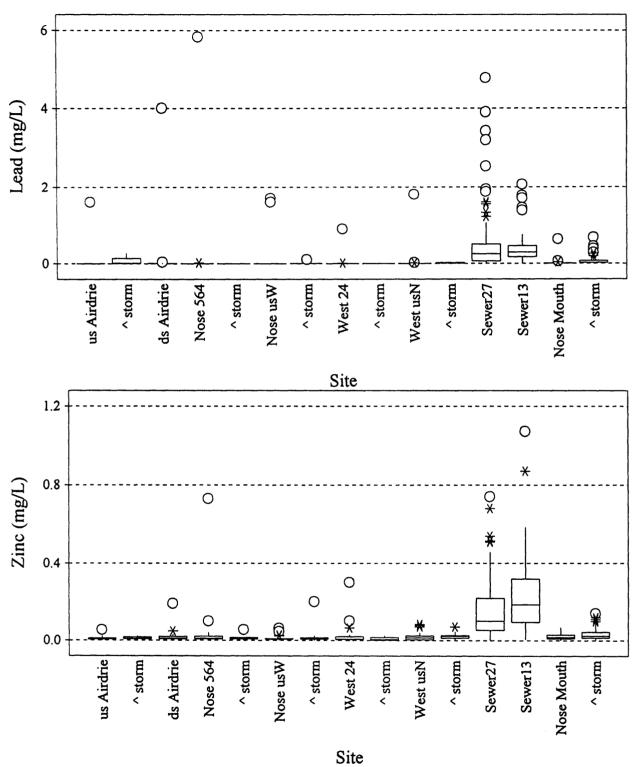

M - 1

Figure 6 cont. Storm

 $\mathbf{H} \in \mathbf{I}$


Figure 6 cont. Storm

94 F F

Site

Figure 6 cont. Storm

 $\mathbf{u} \in \mathbf{I}$

Figure 6 cont. Storm

APPENDIX A

a e entre entre

Historical Data

	070.00		0.175	TIN (5		~~					700		-	D 1110		TOOLIE		FOTOFO
	STN NO	STN NAME	DATE		TEMP	DO	PH	BOD	NFR	FR	TOC	DP	TP	DNH3	TN	TCOLIF	FCOLIF	FSTREP
	AB05BH0390	MOUTH US AIRDRIE	04/24/75	10:00 AM	0		8.1	4.1	L10	433	01 E	0.054	L0.1	0.2 0.155	1.94	376	10	
	AB05BH0300 AB05BH0300	US AIRDRIE	04/16/80 04/22/80	09:35 AM 12:05 PM	10 7	10.55	7.9	3.6 3.6	2.8	290	21.5 23.8	0.254 0.49	0.33 0.5	0.155	1.94	0	0	44
	AB05BH0300	US AIRDRIE	04/22/80	06:30 PM	'	10.55	8.3 8.05	2.4	10 2.8	377 509	25.8	0.49	0.5	0.008	2.08	U	U	
	AB05BH0300	US AIRDRIE	04/30/80	11:20 AM	8	8.3	8	3.1	2.8	523	26.5	0.52	0.59	0.008	2.00	270	10	
	AB05BH0300	US AIRDRIE	05/06/80	12:00 PM	13	7.15	o 7.91	3.9	6	525	30.5	0.58	0.55	0.000	2.46	900	12	40
	AB05BH0300	US AIRDRIE	05/08/80	09:50 AM	13	1.15	7.93	3.8	35.6	733	34.5	0.43	0.6	0.17	2.92	500	12	40
	AB05BH0300	US AIRDRIE	05/21/80	11:20 AM	13	3.25	7.65	4.1	28	786	40	0.438	0.483	0.13	2.89	290	210	
	AB05BH0300	US AIRDRIE	05/28/80	08:45 AM	9	5.15	7.42	0.4	24	700	31	0.295	0.315	0.13	2.89	2000	1290	
	AB05BH0300	US AIRDRIE	06/01/80	06:20 PM	5	0.10	7.88	3.8	2	599	30	0.34	0.4	0.17	2.22	172	144	288
	AB05BH0300	US AIRDRIE	06/04/80	09:00 AM	9		7.52	3.8	63.6	465	25	0.34	0.37	0.08	1.41	2000	172	548
	AB05BH0300	US AIRDRIE	06/11/80	09:00 AM	10	4.9	7.98	2.7	6	720	30	0.41	0.49	0.1	1.7	480	124	116
	AB05BH0300	US AIRDRIE	06/18/80	08:50 AM	9	3.3	8.1	2.9	40.8	710	29.3	0.365	0.375	0.34	2.54	68	60	
	AB05BH0300	US AIRDRIE	06/25/80	09:00 AM	5	3.8	7.7	2.7	6.4	865	28	0.183	0.186	0.3	2.21	36	16	124
	AB05BH0300	US AIRDRIE	07/02/80	09:00 AM	10	1.55	7.22	2.9	13.6	393	19.5	0.84	0.86	0.06	1.77	120	28	32
	AB05BH0300	US AIRDRIE	07/09/80	09:00 AM	12	1.8	7.62	4	5.6	600	24	0.385	0.39	0.33	1.88	240	200	140
	AB05BH0300	US AIRDRIE	07/16/80	08:40 AM	10	2.55	7.69	2.3	2.4	657	80	0.3	0.32	0.07	1.49	52	52	56
	AB05BH0300	US AIRDRIE	07/23/80	12:00 PM	12	2.18	7.5	2.1	5.2	608	19.8	0.3	0.325	0.06	0.91	150	132	50
	AB05BH0300	US AIRDRIE	07/30/80	09:50 AM	16	3.42	7.48	1.3	3.2	603	21.5	0.29	0.295	0.12	1.66	3200	76	
	AB05BH0300	US AIRDRIE	08/06/80	07:50 AM	9	3.3	7.66	2.5	11.2	672	21.5	0.085	0.155	0.07	1.62	120	36	20
	AB05BH0300	US AIRDRIE	08/13/80	08:30 AM	13	2.6	7.46	3.1	5.2	695	22	0.118	0.143	0.04	1.42	168	124	108
	AB05BH0300	US AIRDRIE	08/20/80	08:30 AM	10		7.65	2.2	59.6	637	21.7	0.065	0.145	0.12	2.17	60	52	108
	AB05BH0300	US AIRDRIE	08/20/80	03:45 PM			7.35	6.7	60.4	474	11.2	0.045	0.15	0.24	2.46	•••		
	AB05BH0300	US AIRDRIE	08/27/80	08:30 AM			8.58	9.6	9.2	740	20.7	0.05	0.071	0.1	1.65	570	288	
	AB05BH0310	DS AIRDRIE	04/16/80	09:45 AM	7		7.69	5.7	14.8	291	22	0.262	0.31	0.38	0.64	0.0		
	AB05BH0310	DS AIRDRIE	04/16/80	01:00 PM	•		8.25	4.9	13.2	459	20.8	0.33	0.4	0.006	1.64			
	AB05BH0310	DS AIRDRIE	04/22/80	01:00 PM	7	9.5	8.25	4.5	34.4	353	21.5	0.34	0.42	0.016	2.05	44	4	188
	AB05BH0310	DS AIRDRIE		11:40 AM	9	8.9	8	4.6	22.8	473	22	0.34	0.42	0.014	1.92	460	220	
⊳	AB05BH0310	DS AIRDRIE	05/06/80	12:25 PM	12	8.95	8.29	3.2	13.6	501	22.5	0.3	0.35	0.082	1.74	370	320	28
2	AB05BH0310	DS AIRDRIE	05/14/80	11:30 AM		8.45	8.44	3.8	6	540	22.5	0.26	0.301	0.09	1.72	290	280	4
	AB05BH0310	DS AIRDRIE	05/21/80	12:45 PM	18	8.1	8.1	4.2	8.4	564	22.5	0.275	0.358	0.112	2.07	360	112	
	AB05BH0310	DS AIRDRIE	05/28/80	09:15 AM	9	7.45	7.6	0.8	186	248	12	0.215	2.45	0.45	2.27	1100	870	
	AB05BH0310	DS AIRDRIE	06/01/80	06:40 PM			7.92	4.8	32	471	24	0.39	0.51	0.2	2.2	590	96	36
	AB05BH0310	DS AIRDRIE	06/04/80	09:30 AM	9		7.44	3.4	97.2	325	18	0.24	0.395	0.37	1.54	660	248	400
	AB05BH0310	DS AIRDRIE	06/11/80	09:30 AM	12	5.6	7.62	3.4	23.2	585	24.3	0.215	0.3	0.09	1.12	280	224	40
	AB05BH0310	DS AIRDRIE	06/18/80	09:10 AM	13	3.65	8.2	4.1	5.2	570	23.3	0.185	0.195	0.18	1.68	640	500	
	AB05BH0310	DS AIRDRIE	06/25/80	09:15 AM	12	7.1	8.4	2.7	8	556	22.3	0.137	0.154	80.0	1.46	1110	1000	112
	AB05BH0310	DS AIRDRIE	07/02/80	09:30 AM	12	4.25	7.38	3.7	47.6	358	20.5	0.73	0.8	0.34	2.03	730	210	180
	AB05BH0310	DS AIRDRIE	07/09/80	09:30 AM	11	7.5	7.96	3.2	12	410	14	0.165	0.225	0.08	1.11	1300	290	160
	AB05BH0310	DS AIRDRIE	07/16/80	09:00 AM	10	5.3	8	2.5	6.8	390	35	0.115	0.125	0.04	0.43	450	72	12
	AB05BH0310	DS AIRDRIE	07/23/80	12:00 PM	13	3.6	7.68	2	12.8	345	9.5	0.09	0.115	0.03	0.45	600	30	44
	AB05BH0310	DS AIRDRIE	07/30/80	10:00 AM	16	3.42	7.16	1.5	8.8	240	15.5	0.075	0.085	0.05	1.16	610	116	84
	AB05BH0310	DS AIRDRIE	08/06/80	12:00 PM	11	3.25	7.74	1.5	10.8	471	13.9	0.68	0.235	0.04	1.02	3700	160	16
<pre></pre>	AB05BH0310	DS AIRDRIE	08/13/80	09:00 AM	13	4.4	7.72	3.1	8.8	476	16.8	0.083	0.104	0.04	0.96	190	176	108
6	AB05BH0310	DS AIRDRIE	08/16/80	12:00 PM												3700	160	16
	AB05BH0310	DS AIRDRIE	08/20/80	08:50 AM	10		7.5	1.8	7.6	429	13.9	0.06	0.075	0.08	0.98	1400	48	8
Š	AB05BH0310	DS AIRDRIE	08/27/80	09:00 AM		5	8.5	7.2	38.8	500	15.4	0.05	0.165	0.05	1.35	3400	76	
ASK	AB05BH0310	DS AIRDRIE	09/03/80	08:45 AM		4.85	7.86	3.2	17.6	526	13.5	0.073	0.118	0.03	1.17	2100	100	40
5	AB05BH0310	DS AIRDRIE	09/10/80	12:00 PM		6.4	7.72	6.8	30.8	553	15.5	0.061	0.194	0.07	0.49	7500	15	
2	AB05BH0310			09:40 AM		5.15	8.36	5.6	21.2	520	14.8	0.048	0.118	0.06	1.49	2200	670	
ž	AB05BH0310			07:05 AM		9.3	8.27	6.6	11	500	14.8	0.035	0.077	0.04	1.35	132	12	8
ONSULTING	AB05BH0320			12:30 PM	_		-									76	10	40
5	AB05BH0320			01:00 PM	7		7.8	13.2		400		0.363		0.45	3.05	148	20	510
Ę	AB05BH0320			01:05 PM	_		-									16	16	
ົດ	AB05BH0320			01:25 PM	9		7.95	6	22.8	314	21	0.212	0.35	0.085	1.78	340	12	
		NOSE 564		11:45 AM	7	8.5	8.3	4.3	13.6	394	20.6	0.25	0.31	0.016	1.91	76	0	36
		NOSE 564		11:00 AM		6.45	7.95	3.1	2.4	526	22	0.34	0.37	0.006	1.56	800	8	
	AB05BH0320	NOSE 564	05/06/80	11:15 AM	12	5.5	7.91	3.4	5.6	584	23.6	0.34	0.41	0.08	1.8	180	20	96

Ĩ

	AB05BH0320	NOSE 564	05/14/80	10:30 AM	12	5.35	7.78	5.9	7.6	700	23.5	0.328	0.463	0.076	2.18	80	24	36
	AB05BH0320	NOSE 564	05/21/80	10:40 AM	11	6.15		6.3	46.8	744	26	0.361	0.47	0.058	2.21	250	64	
	AB05BH0320	NOSE 564	05/28/80	09:30 AM	9	5.1		0.8	101	408	15.5	0.145	0.435	0.28	1.93	1900	1800	
	AB05BH0320	NOSE 564	05/28/80	10:00 AM												1400	490	
	AB05BH0320	NOSE 564	06/04/80	09:45 AM	8		7.4	4	38.4	436	21.5	0.29	0.37	0.15	1.33	840	340	168
	AB05BH0320	NOSE 564	06/11/80	09:55 AM	15	5	7.6	3.2	10.8	462	18.8	0.245	0.27	0.13	1.01	420	52	104
	AB05BH0320	NOSE 564	06/14/80	06:05 PM			8	4.4	5.6	562	20.8	0.23	0.235	0.06	0.83			
	AB05BH0320	NOSE 564	06/18/80	10:00 AM	13	5.65	8.3	3.1	6.4	620	21	0.25	0.285	0.29	1.9	164	15.6	
	AB05BH0320	NOSE 564	06/19/80	10:30 PM			8.6	2.4	6	600	20.5	0.25	0.25	0.12	1.71	150	112	148
	AB05BH0320	NOSE 564	06/22/80	12:00 PM			8.8	3	10.4	634	20	0.245	0.25	0.15	1.61			
	AB05BH0320	NOSE 564	06/25/80	09:50 AM		8.2	8.3	5.6	22.8	634	21.5	0.183	0.275	0.12	1.62	530	330	580
	AB05BH0320	NOSE 564	06/26/80	04:10 PM		0.2	8.45	9.2	8	642	21	0.16	0.178	0.09	1.41	280	140	1400
	AB05BH0320	NOSE 564	07/02/80	09:45 AM	11	3	0.10	3.3	•	0.2		0.402	0.44	0.00	1.91	390	220	220
	AB05BH0320	NOSE 564	07/09/80	09:45 AM	11	5.1	7.85	3.7	22	450	19	0.3	0.38	0.2	1.62	700	300	180
	AB05BH0320	NOSE 564	07/16/80	09:15 AM	12	4.78	7.52	1.8	12.2	423	25	0.135	0.00	0.1	0.68	440	220	80
	AB05BH0320	NOSE 564	07/23/80	09:10 AM	14	3.35	7.58	2.1	13.2	423		0.135	0.17	0.51	0.65	280	280	130
	AB05BH0320	NOSE 564	07/29/80		14	5.55					11.8			0.31		3200	1500	200
	AB05BH0320			12:30 PM		4.45	8.2	1.9	98.4	454	13.1	0.15	0.165		1.16			200 510
		NOSE 564	07/30/80	10:10 AM		4.45	7.74	2.4	21.2	434	13.7	0.145	0.18	0.05	1.11	1700	1200	
	AB05BH0320	NOSE 564	08/06/80	09:05 AM		5.45	8.15	2.7	12	491	13.7	0.08	0.082	0.06	0.97	4100	2800	590
	AB05BH0320	NOSE 564	08/13/80	09:15 AM		7.45	8.4	2.7	18.4	504	16.5	0.1	0.158	0.07	1.24	1200	970	924
	AB05BH0320	NOSE 564	08/20/80	09:00 AM			8.4	2.3	16.4	475	16.5	0.085	0.115	0.16	1.35	5200	1700	172
	AB05BH0320	NOSE 564	08/20/80	07:05 PM			8.89	3.6	19.6	471	16	0.085	0.105	0.12	1.35	720	620	690
	AB05BH0320	NOSE 564	08/27/80	09:15 AM		7	9.18	8.8	48	485	17.8	0.081	0.15	0.08	1.51	390	204	510
	AB05BH0320	NOSE 564	09/03/80	09:10 AM		6.6	8.75	1	71.2	537	18.5	0.123	0.26	0.04	1.7	1400	270	52
	AB05BH0320	NOSE 564	09/17/80	09:10 AM		9.45	8.97	4.8	12	615	19.5	0.107	0.161	0.67	1.93	112	52	
	AB05BH0320	NOSE 564	09/24/80	08:00 AM		9.7	8.79	1.9	8	722	20.3	0.063	0.095	0.04	1.76	68	32	16
	AB05BH0330	NOSE US WEST	04/09/80	12:10 PM			8	11.8	22	350	22	0.314	0.46	0.45	2.92	108	4	200
	AB05BH0330	NOSE US WEST	04/16/80	12:50 PM	6		7.7	5.3	14.8	295	20.5	0.226	0.3	0.19	1.96	176	8	
	AB05BH0330	NOSE US WEST	04/22/80	10:40 AM	8	8.55	8.15	3.4	5.2	400	20	0.26	0.29	0.007	1.8	24	4	12
	AB058H0330	NOSE US WEST	04/30/80	10:15 AM	10	7.55	7.8	2	2	562	22.4	0.34	0.35	0.011	1.8	480	30	
ယ	AB05BH0330	NOSE US WEST	05/06/80	10:20 AM	13	7.3	8.12	2.8	3.2	584	22.4	0.3	0.34	0.24	2.62	150	24	72
	AB05BH0330	NOSE US WEST	05/14/80	09:40 AM		6.55	8.1	2.9	7.6	698	22.5	0.233	0.277	0.1	1.8	10	10	76
	AB05BH0330	NOSE US WEST	05/16/80	09:50 AM	13			1.3								90	64	48
	AB05BH0330	NOSE US WEST	05/21/80	09:45 AM	15	7.15	8.1	2.5	1.2	726	24.5	0.152	0.253	0.102	1.63	90	24	
	AB05BH0330	NOSE US WEST	05/23/80	02:45 PM			8.47	7.6	1.2	60	23.8	0.216	0.236	0.14	1.31			
	AB05BH0330	NOSE US WEST	05/28/80	10:55 AM		6.8	7.34	0.4	45.5	429	16	0.135	0.34	0.3	2.08	2200	780	
	AB05BH0330	NOSE US WEST	06/04/80	11:00 AM	8	0.0	7.36	3.2	29	416	21.5	0.285	0.345	0.26	1.52	540	56	84
	AB05BH0330	NOSE US WEST	06/11/80	01:15 AM	•	5.7	7.8	2.8	20	533	18.5	0.225	0.255	0.08	0.95	040	00	04
	AB05BH0330	NOSE US WEST	06/11/80	01:50 AM		0.7	7.74	2.8	8	549	18	0.26	0.325	0.1	1.5			
	AB05BH0330	NOSE US WEST	06/11/80	02:20 AM			7.6	2.7	8.4	544	19	0.245	0.3	0.08	1.13			
	AB05BH0330	NOSE US WEST	06/11/80	02:20 AM			7.65		8.4 8.4	551	19	0.245	0.29	0.05	0.7			
	AB05BH0330	NOSE US WEST	06/11/80	11:05 AM				3.2							1	530	20	240
	AB05BH0330						7.82	3.5	11.6	670	18.5	0.255	0.265	0.12			20	240
		NOSE US WEST	06/11/80	12:15 PM			7.58	3.1	6.4	544	19.5	0.235	0.26	0.07	1.2	170	84	400
X	AB05BH0330	NOSE US WEST	06/11/80	12:45 PM			7.54	3.2	5.6	551	19.3	0.245	0.305	0.07	0.92	360	44	300
≥	AB05BH0330	NOSE US WEST	06/11/80	01:15 PM	11	5.7	7.8	2.8		533	18.5	0.225	0.255	0.08	0.95	180	36	380
DA	AB05BH0330	NOSE US WEST	06/11/80	01:50 PM			7.74	2.8	8	549	18	0.26	0.325	0.1	1.5	520	100	390
Ŕ	AB05BH0330	NOSE US WEST	06/11/80	02:20 PM			7.6	2.7	8.4	544	19	0.245	0.3	0.08	1.13	470	170	460
AS	AB05BH0330	NOSE US WEST	06/11/80	02:50 PM			7.65	3.2	8.4	551	19	0.24	0.29	0.05	0.7	550	84	370
Ϋ́́	AB05BH0330	NOSE US WEST	06/18/80	11:45 AM	11	5.7	7.72	2.4	2.8	570	19.8	0.345	0.355	0.09	1.46	200	176	
>	AB05BH0330	NOSE US WEST	06/19/80	10:10 AM			8.5	2.4	9.2	510	18.8	0.285	0.325	0.28	1.51	380	240	1200
8		NOSE US WEST	06/22/80	08:20 PM			8.6	2.6	14	436	16.8	0.31	0.325	0.11	1.74			
ONSULTING	AB05BH0330	NOSE US WEST		11:10 AM		6.35	8.1	2.3	5.4	510	17.3	0.263	0.28	0.46	1.71	124	100	520
US		NOSE US WEST	06/26/80	12:00 PM			8.5	1.6	10.8	507	16	0.252	0.262	0.06	1.06	1800	550	1000
5	AB05BH0330	NOSE US WEST	07/02/80	10:55 AM	10	5.85	7.52	3.4	19.6	365	17	0.317	0.371	0.09	1.38	300	72	300
Ę		NOSE US WEST	07/09/80	10:50 AM	13	6.1	7.92	3.4	11.2	440	18.5	0.25	0.29	0.45	2.12	84	12	64
ଦି		NOSE US WEST	07/16/80	10:05 AM	12	6.1	7.93	1.3	6.4	430	35	0.175	0.2	0.12	0.56	240	120	76
		NOSE US WEST	07/23/80	10:45 AM	13	6	8.3	2.3	5.2	423	12	0.195	0.205	0.04	0.85	500	30	80
		NOSE US WEST	07/30/80	08:30 AM	15	4.55	8.1	1.8	3.2	243	14	0.165	0.175	0.04	0.99	510	40	
		NOSE US WEST		09:30 AM	11	6.88	8.3	1.9	4	457	12.6	0.1	0.1	L0.003	1.04	6600	580	244
			-			-					-							

ŝ

										450	40.0	0.4	0.4	0.02	1.04			
	AB05BH0330	NOSE US WEST	08/06/80	10:40 AM	11	6.88	8.3	1.9	4	452	12.6	0.1	0.1	0.03		1400	48	240
	AB05BH0330	NOSE US WEST	08/10/80	07:30 AM			8.4	2.2	6.4	463	14	0.115	0.15	0.04	1.85			
	AB05BH0330	NOSE US WEST	08/10/80	08:30 AM			8.3	2.2	7.2	484	13.7	0.11	0.355	0.04	2.6	2400	32	280
	AB05BH0330	NOSE US WEST	08/10/80	09:30 AM			7.82	2.2	21.2	477	14.2	0.11	0.165	0.03	1.25		108	290
	AB05BH0330	NOSE US WEST	08/10/80	10:30 AM			8.4	2.7	6.8	459	13.2	0.105	0.12	0.04	1,13	2500	8	340
	AB05BH0330	NOSE US WEST	08/11/80	09:30 AM			7.82	2.2	21.2	477	14.2	0.11	0.165	0.03	1.25			
	AB05BH0330	NOSE US WEST	08/11/80	10:30 AM			8.4	2.7	6.8	459	13.2	0.105	0.12	0.04	1.13			
	AB05BH0330	NOSE US WEST	08/13/80	09:50 AM	13	6.85	7.82	2.8	4.4	483	15.3	0.113	0.116	0.03	1			
	AB05BH0330	NOSE US WEST	08/20/80	09:45 AM	11		8.25	1.2	2.4	481	15.7	0.08	0.08	0.08	1.17	2300	56	64
	AB05BH0330	NOSE US WEST	08/27/80	09:45 AM	13	6.8	8.62	2.6	3.6	470	16	0.088	0.11	0.04	1.17	3400	76	
	AB05BH0330	NOSE US WEST	09/03/80	12:00 PM	.0	6.8	8.04	2	10.4	544	15.8	0.097	0.118	0.02	1.25	1400	76	60
						0.0	8	15.8	8	310	21	0.129	0.26	0.25	2.52	76	10	40
	AB05BH0350	WEST 24	04/09/80	12:30 PM									0.163	0.32	2.19	16	16	
	AB05BH0350	WEST 24	04/16/80				7.61	4.2	11.2	290	13.5	0.114					10	4
	AB05BH0350	WEST 24	04/22/80	11:05 AM		11.95	8.3	2.1	2.4	443	11.6	0.059	80.0	0.002	1.01	10		4
	AB05BH0350	WEST 24	04/30/80	10:40 AM		10.05	8.2	2.2	7.2	593	11	0.064	0.091	L0.002	0.7	560	180	
	AB05BH0350	WEST 24	05/06/80	10:45 AM		9.65	8.32	1.9	2.8	583	10.2	0.066	0.08	0.058	0.64	340	24	20
	AB05BH0350	WEST 24	05/14/80	10:00 AM		10	8.35	1.9	4	574	8	0.053	0.068	0.028	0.55	190	160	60
	AB05BH0350	WEST 24	05/21/80	10:10 AM		8.3	7.85	2.6	6	594	9.5	0.077	0.087	0.026	0.66	280	235	
	AB05BH0350	WEST 24	05/28/80	10:00 AM		8.5	7.7	2.2	16.8	666	22.5	0.105	0.16	0.18	1.81	1400	490	
	AB05BH0350	WEST 24	06/04/80	10:00 AM			8	2.2	14.4	615	16.5	0.075	0.105	0.08	0.6	5100	320	212
	AB05BH0350	WEST 24	06/11/80	03:30 AM							15.5					10	50	
		WEST 24	06/11/80	03:30 PM		8.1	8.1	2.8	12.4	640	15.4	0.11	0.125	0.11	0.61	3700	570	204
	AB05BH0350	WEST 24	06/14/80	05:20 PM		0.1	7	2.0	63	50		•	00					
				05:50 PM			8.1	3.6	3.6	644	16.8	0.115	0.15	0.06	0.93	800	300	
	AB05BH0350		06/14/80			7.075								0.09	1.11	000	000	
		WEST 24	06/18/80	10:35 AM		7.275	8.2	1.5	1.6	585	13.8	0.145	0.145					
	AB05BH0350		06/19/80	10:00 AM			8.2	2.8	2.8	590	13.8	0.125	0.135	0.07	1.21	5000	40.40	050
	AB05BH0350	WEST 24	06/22/80	12:00 PM			8.5	2.4	14.8	551	12	0.125	0.125	L0.002	0.96	5000	1340	850
	AB05BH0350	WEST 24	06/25/80	10:10 AM		8.5	8.2	1.9	24	537	9.8	0.08	0.091	0.02	1.24	1800	600	580
•	AB05BH0350	WEST 24	06/26/80	03:45 PM			8.35	2.8	15.2	523	11.5	0.084	0.094	1	0.61	2500	1070	2300
P	AB05BH0350	WEST 24	07/02/80	10:15 AM		10.15	8.35	1.9	9.2	565	12	0.084	0.085	0.12	0.51	1300	390	380
-+-	AB05BH0350	WEST 24	07/09/80	10:10 AM		9.55	8.4	3	4	550	12.5	0.097	0.115	0.05	0.94	1200	590	700
	AB05BH0350	WEST 24	07/16/80	07:30 AM		5.8	8.3	1.7	4	520	35	0.065	0.075	0.04	0.54	990	220	190
	AB05BH0350	WEST 24	07/23/80	06:45 AM		3.85	7.76	1.6	3.6	507	8.3	0.065	0.07	0.1	0.53	1800	500	330
	AB05BH0350	WEST 24	07/29/80	12:00 PM		0.00	8.4	1.2	4.4	501	10.3	0.075	0.075	0.16	1.03			
	AB05BH0350	WEST 24	07/30/80	07:30 AM		4.65	7.64	1.5	15.6	449	11.5	0.08	0.085	0,35	0.95	600	380	
	AB05BH0350		08/06/80			8.37	8.2	1.7	1.2	511	9	0.035	0.1	0.02	0.77	800	400	144
										513	8.6	0.03	0.036	0.01	0.69	2300	1000	376
	AB05BH0350		08/13/80			6.725	7.78	1.9	0.8	515	0.0	0.03	0.030	0.01	0.03	2300	1000	5/0
	AB05BH0350	WEST 24	08/20/80	06:45 AM				5.3				0.05	0.055		0.79			
	AB05BH0350		08/20/80	07:25 AM			8.83	3.5		450	•	0.05	0.055			2000	200	440
	AB05BH0350	WEST 24	08/20/80	09:15 AM			8	1.8	2.4	458	8	0.035	0.035	0.1	1.44	2000	300	440
	AB05BH0350		08/20/80	06:45 PM								0.045	0.14					
	AB05BH0350	WEST 24	08/20/80	07:25 PM			8.83	3.5	5.6	429	7.6	0.05	0.055	0.04	0.79	1600	1120	500
	AB05BH0350	WEST 24	08/27/80	07:30 AM			8.55	0.6	1.6	537	8.2	0.028	0.034	0.02	0.73	590	260	
	AB05BH0350	WEST 24	09/03/80	09:30 AM		9.35	8.42	1.3	3.6	511	7.4	0.03	0.031	L0.002	0.99	760	330	100
Z	AB05BH0350	WEST 24	09/10/80	12:00 PM		8.9	8.55	0.6	2	521	6.5	0.028	0.034	L0.002	0.61	240	156	
Σ	AB05BH0350	WEST 24	09/17/80	08:45 AM		7.65	8.02	1.2	3.2	553	7.8	0.026	0.028	0.02	0.62	380	190	
ADA	AB05BH0350	WEST 24		07:30 AM		9.3	8.46	0.8	3	564	6	0.018	0.019	0.01	0.57	450	200	124
Ŧ	AB05BH0350	WEST 24	10/17/80	08:45 AM		7.65	00	0.0	-									
WASKA	AB05BH0360	WEST US NOSE	04/09/80	12:00 PM		7.00	7.9	14.5	49	370	23	0.114	0.29	0.47	2.79	276	192	236
SK	AB05BH0360	WEST US NOSE		12:45 PM			7.66		19.6	301	14.5	0.121	0.188	0.28	2.16	152	140	
5					-			4.1					0.097	0.028	1.16	92	60	24
2		WEST US NOSE		10:30 AM	1	11.6	8.3	2.6	10.8	429	12.2	0.068		0.028	1.10	2100	1200	
ž		WEST US NOSE		10:00 AM		10	8.15	2.8	46.4	596	12.3	0.062	0.161					820
ONSULTING		WEST US NOSE		10:10 AM	12	9.6	8.1	2.9	21.2	593	11.5	0.078	0.136	0.12	0.76	690 700	630	830
F		WEST US NOSE		09:30 AM		9.2	8.03	3	10.4	580	10	0.073	0.138	0.072	0.88	700	150	250
H		WEST US NOSE	05/21/80		12	6.25	7.9	3.4	29.6	582	11.5	0.142	0.232	0.088	1.1	250	92	
X		WEST US NOSE		02:30 PM	9		7.38	13.4	528	447	47.5	0.157	0.85	1.5	6.05			
41		WEST US NOSE	05/28/80	10:35 AM		8.25	7.8	2	48.5	704	24.5	0.105	0.25	0.37	4.17	3800	3800	
	AB05BH0360	WEST US NOSE	06/04/80	10:45 AM			8.1	1.8	372	585	16	0.115	0.18	0.21	1.34	24000	8800	2370
		WEST US NOSE		01:00 AM			7		60	64		1						

a 1

	AB05BH0360	WEST US NOSE	06/11/80	02:40 AM				7.3				0.1	0.385		2.28			
	AB05BH0360	WEST US NOSE	06/11/80	11:00 AM	12		8.3	2.5	23.6	640	15.5	0.075	0.13	0.11	0.82	690	230	420
	AB05BH0360	WEST US NOSE	06/11/80	11:40 AM			8		109	590	18			0.12				
	AB05BH0360	WEST US NOSE	06/11/80	12:00 PM			8.1	2.8	19.6	632	17	0.075	0.13	0.1	0.74	3000	450	212
	AB05BH0360	WEST US NOSE	06/11/80	12:30 PM			7.98	3.1	25.6	606	16.5	0.075	0.15	0.07	0.96	2000	400	260
	AB05BH0360	WEST US NOSE	06/11/80	01:00 PM		7.6	7.98	3	61.3	643	16	0.065	0.185	0.09	1.04	4900	440	540
	AB05BH0360		06/11/80			7.0	7.50	5.5	01.5	043	10	0.005	0.305	0.03	1.3	67000	1000	790
		WEST US NOSE		01:40 PM			7.04			500	40 E			0.04				
	AB05BH0360	WEST US NOSE	06/11/80	02:10 PM			7.84	7.1	266	566	19.5	0.065	0.41	0.21	2.04	53000	2200	1600
	AB05BH0360	WEST US NOSE	06/11/80	02:40 PM			8	7.3	228	544	18.5	0.09	0.385	0.21	2.28			
	AB05BH0360	WEST US NOSE	06/18/80	11:30 AM	12	7.6	8.2	2.4	23.6	590	13.5	0.09	0.135	0.11	1.26	1400	190	
	AB05BH0360	WEST US NOSE	06/19/80	10:20 PM												4300	4100	12800
	AB05BH0360	WEST US NOSE	06/22/80	08:30 PM			8.2	13	97.5	572	14	0.125	0.23	0.15	1.77			
	AB05BH0360	WEST US NOSE	06/25/80	11:10 AM		8.3	7.9	2.5	3.2	518	12	0.064	0.115	0.37	1.28	3000	1300	4000
	AB05BH0360	WEST US NOSE	06/26/80	12:00 PM		0.0	7.9	3.2	379	549	14	0.08	0.476	0.21	2.21	17000	3500	12000
	AB05BH0360			10:40 AM	40	0.25									0.62	4400	1300	3300
		WEST US NOSE	07/02/80		10	9.35	8.2	2	22	547	12	0.075	0.12	0.1				
	AB05BH0360	WEST US NOSE	07/09/80	10:50 AM	11.5	9	8.3	3.1	8.8	550	13	0.102	0.115	0.23	0.92	3600	290	480
	AB05BH0360	WEST US NOSE	07/16/80	10:05 AM	12	7.35	7.94	2.2	72	402	35	0.075	0.185	0.09	0.64	12900	800	780
	AB05BH0360	WEST US NOSE	07/23/80	10:30 AM	13	8.3	7.92	2.6	16.8	500	8.8	0.095	0.12	L0.002	0.47	2000	590	280
	AB05BH0360	WEST US NOSE	07/30/80	08:15 AM	13	5.45	7.4	5.5	450	229	11	0.095	0.185	0.24	4.28	240	160	190
	AB05BH0360	WEST US NOSE	07/30/80	10:30 AM			7.94	3.5	444	409	10.3	0.075	0.55	0.17	2.44			
	AB05BH0360	WEST US NOSE	08/06/80	10:25 AM	10	8.3	8.2	1.5	18	515	10	0.05	0.185	0.08	0.92	3800	480	240
	AB05BH0360	WEST US NOSE	08/06/80	12:00 PM	10	0.5	0.2	1.5	10	515	10	0.00	0.100	0.00	0.02	1	1	1
							• •			500	0.7	0.00		0.00	0.00			
	AB05BH0360	WEST US NOSE	08/10/80	07:30 AM			8.3	2.5	22.8	506	9.7	0.06	0.1	0.06	0.96	4300	1030	280
	AB05BH0360	WEST US NOSE	08/10/80	08:00 AM												1	1	1
	AB05BH0360	WEST US NOSE	08/10/80	08:30 AM			8.25	2.2	14.4	514	10	0.062	0.095	0.02	0.89	3100	1120	430
	AB05BH0360	WEST US NOSE	08/10/80	09:00 AM												1	1	1
	AB05BH0360	WEST US NOSE	08/10/80	09:30 AM			7	2.1	62.7	495	10.9	0.092	1.55	0.07	1.15	5200	990	630
	AB05BH0360	WEST US NOSE	08/10/80	10:00 AM												1	1	1
	AB05BH0360	WEST US NOSE	08/10/80	10:30 AM			8.2		238	506	11.1	0.092	0.42	0.03	1.4	28000	2200	1270
⊳	AB05BH0360	WEST US NOSE	08/13/80	09:50 AM	13	8.15	8.2	2.6	54	504	11	0.051	0.133	0.08	1.14	20000	2200	
ίn	AB05BH0360				15	0.15										1200	220	122
		WEST US NOSE	08/20/80	09:45 AM			7.9	2.3	46	468	9.2	0.05	0.115	0.18	0.9	1200	220	132
	AB05BH0360	WEST US NOSE	08/20/80	12:00 PM												1	1	1
	AB05BH0360	WEST US NOSE	08/27/80	09:45 AM			8.36	2.4	154	526	11.1	0.052	0.345	0.17	1.78	3000	1400	
	AB05BH0360	WEST US NOSE	09/03/80	12:00 PM		6.7	7.63	6	347	267	17.3	0.086	0.78	0.06	3.04	29000	20000	2800
	AB05BH0360	WEST US NOSE	09/10/80	12:00 PM		6.7	8.14	10	149	491	9.3	0.046	0.43	0.06	1.73	670	170	
	AB05BH0360	WEST US NOSE	09/17/80	08:30 AM		7	8.09	3.4	38.8	567	9.3	0.035	0.101	0.04	1.13	970	800	
	AB05BH0360	WEST US NOSE	09/17/80	12:00 PM												1	1	
	AB05BH0360	WEST US NOSE	09/24/80	08:30 AM		8.2	8.51	6.6	277	397	13.5	0.146	0.49	0.04	1.96	2900	2000	1000
	AB05BH0360	WEST US NOSE	09/24/80	12:00 PM		0.2	0.01	0.0	211	007	10.0	0.140	0.40	0.04		1	1	1
							•	40.0	20	200	20	0.000	0.36	0.00	2.95			-
	AB05BH0370	MOUTH	04/09/80	10:15 AM			8	13.8	26	380	20	0.206	0.36	0.62	2.85	200	128	356
	AB05BH0370	MOUTH	04/16/80	12:15 PM			7.67	5.2	24.8	321	16.5	0.159	0.236	0.165	1.74			_
	AB05BH0370	MOUTH	04/22/80	09:45 AM	6	9.7	8.15	3.8	16.8	436	15.7	0.133	0.2	0.072	1.99	390	308	92
	AB05BH0370	MOUTH	04/23/80	09:45 AM												390	308	92
	AB05BH0370	MOUTH	04/30/80	12:00 PM		7.2	7. 9 5	4.4	22	600	15.5	0.22	0.3	0.103	2.14	2500	180	
Z	AB05BH0370	MOUTH	05/06/80	09:00 AM	13	11.65	8.38	3.8	24	600	14	0.108	0.182	0.4	2	320	60	36
MADA	AB05BH0370	MOUTH	05/14/80	09:05 AM		9.8	8.36	8.3	18.8	647	12	0.034	0.19	0.18	1.97	350	100	68
S S	AB05BH0370	MOUTH	05/21/80										0.404	0.054	1.56	40	16	
١¥				09:00 AM		10.35	8	6.2	14	690	11.5	0.063				40	10	
Ā	AB05BH0370	MOUTH	05/23/80	01:45 PM			7.34	11.8	100	522	27	0.201	0.518	1.4	5.15			
ASKA	AB05BH0370	MOUTH		11:15 AM		7.35	7.4	0.8	96	527	15.3	0.065	0.405	0.27	2.49	14000	11000	
5	AB05BH0370	MOUTH	06/01/80	03:30 AM				4										
0	AB05BH0370	MOUTH	06/01/80	03:45 AM				3.4				0.09	0.285		2.45			
g	AB05BH0370			04:25 AM									0.46					
S	AB05BH0370	MOUTH		04:50 AM				6.5				0.295	0.85		6.67			
ONSULTING	AB05BH0370	MOUTH		05:25 AM				15.7			15	0.18	0.85	0.7	4.33			
Ę				03:30 PM			7.54		67	653	14.5	0.105	0.295	0.25	5.8			
Ę								4	92	653 527						42000	200	240
ଦ	AB05BH0370			03:45 PM			7.5	3.4	87.5	537	15	0.09	0.285	0.41	2.45	13900	320	240
	AB05BH0370			04:00 PM			7.7	3	124	688	15	0.105	0.435	0.31	1.13			
	AB05BH0370			04:25 PM			7.7	4.8	258	560	15.5	0.095	0.46	0.3	3.05			
	AB05BH0370	MOUTH	06/01/80	04:50 PM			7.49	6.5	556	398	16.5	0.295	0.85	0.95	6.67	7700	1410	6300

	AB05BH0370	MOUTH	06/01/80	05:25 PM			7.46		634	405	15			0.7	_	83000	1280	28800
	AB05BH0370	MOUTH	06/04/80	11:15 AM			7.34	5	115	403	15.5	0.125	0.26	0.16	2.07	42000	10200	6800
	AB05BH0370	MOUTH	06/11/80	11:00 AM			8.3	2.5	23.6	640	15.5	0.075	0.13	0.11	0.82			
	AB05BH0370	MOUTH	06/11/80	12:30 PM			7.76	4.9	41.2	713	15.3	0.07	0.16	0.1	1.89	2100	220	380
	AB05BH0370	MOUTH	06/11/80	01:00 PM			7.82	4.6	52	670	15.8	0.085	0.19	0.13	2.1	2600	160	530
	AB05BH0370	MOUTH	06/11/80				7.7	7.1	42	722	13.5	0.065	0.17	0.08	1.8	1600	210	330
	AB05BH0370	MOUTH	06/14/80				7.77	10.8	353	696	17.8	0.125	0.17	0.08	1.9			
	AB05BH0370	MOUTH	06/14/80				7.58	14.6	33.6	717	20.3	0.1	0.165	0.11	2.63			
	AB05BH0370	MOUTH	06/14/80				7.74	13	34	715	19.8	0.095	0.165	0.02	2.14			
	AB05BH0370	MOUTH	06/14/80				7.46	13.2	32.8	682	19.5	0.095	0.16	0.12	2.33			
	AB05BH0370	MOUTH	06/14/80				7.40	15.4	30	702	19.3	0.095	0.145	0.15	2.48			
											16.3	0.095	0.145	0.18	2.48			
	AB05BH0370	MOUTH	06/14/80				7.6	15.6	41.5	699 663		0.095	0.175	0.10	2.12			
	AB05BH0370	MOUTH	06/14/80	08:30 PM		7 005	7.38	15.8	46.8	663	16.5					7200	600	
	AB05BH0370	MOUTH	06/18/80		13	7.625	7.82	4.4	47.2	660	13.8	0.06	0.135	0.17	2.63	7200	800	
	AB05BH0370	MOUTH	06/19/80				7.4		1754	270	17.8			0.04			22200	40000
	AB05BH0370	MOUTH	06/19/80					13.6				0.105	1.2		6.99	63000	28000	10000
	AB05BH0370	MOUTH	06/22/80	05:45 PM			7.54	2.8	42.4	448	10.3	0.125	0.175	0.21	2.63	8000	270	252
	AB05BH0370	MOUTH	06/22/80	06:30 PM			7.27	3.6	66.8	448	10.8	0.095	0.19	0.25	2.47	8900	330	340
	AB05BH0370	MOUTH	06/22/80	07:00 PM			7.58	3.4	49.6	461	10.8	0.085	0.185	0.22	3.47	26000	350	310
	AB05BH0370	MOUTH	06/22/80	07:30 PM			7.26	4.8	96.7	436	11.3	0.115	0.24	0.39	3.14	8200	590	630
	AB05BH0370	MOUTH	06/22/80	08:00 PM			7.44	3.6	91	462	10.8	0.09	0.215	0.3	2.72	11700	530	450
	AB05BH0370	MOUTH	06/22/80	08:30 PM			7.31	3.4	61.6	475	13	0.1	0.2	0.29	3.57	43000	2300	2800
	AB05BH0370	MOUTH	06/22/80	09:00 PM			7.47	5	72	455	11.3	0.1	0.24	0.25	1.45			
	AB05BH0370	MOUTH	06/25/80	07:40 AM		4.45	7.2	4.2	45.5	483	11.5	0.068	0.2	0.29	3.37	6800	1600	850
	AB05BH0370	MOUTH	06/26/80	02:00 PM			7.42	6	478	379	17	0.073	0.58	0.49	4.6	27000	1800	11100
	AB05BH0370	MOUTH	07/02/80	07:35 AM		5	7.44	2.9	74	459	15.5	0.154	0.283	0.54	2.67	2100	160	300
	AB05BH0370	MOUTH	07/09/80	07:30 AM	12	6.05	8.15	5	56.4	610	13	0.109	0.215	0.21	2.47	1200	124	160
	AB05BH0370	MOUTH	07/16/80	07:15 AM	15	4.1	7.66	4.8	82	563	40	0.09	0.245	0.31	1.72	8800	860	1000
	AB05BH0370	MOUTH	07/23/80	07:30 AM	14	4.95	7.78	3.2	170	546	9.5	0.1	0.205	0.2	1.56	4500	220	110
₽	AB05BH0370	MOUTH	07/29/80	08:30 AM	17	4.35	7.66	9	12.8	528	11.9	0.05	0.155	0.36	3.57	58000	1300	2600
9	AB05BH0370	MOUTH					7.68	10.8	235	537	12	0.045	0.265	0.16	3.26	80000	3100	3300
			07/29/80				7.56		235	476	12.7	0.045	0.205	0.2	3.31	180000	2800	2400
	AB05BH0370	MOUTH	07/29/80					11.6		326	13.8	0.005	0.275	0.2	4.15	250000	6500	33000
	AB05BH0370	MOUTH	07/29/80	10:00 AM			7.34	18.5	52							140000	5700	9000
	AB05BH0370	MOUTH	07/29/80				7.47	22	552	260	13.6	0.16	0.8	0.5	3.81	8300	5700	10000
	AB05BH0370	MOUTH	07/29/80	11:00 AM			7.52	21.5	492	195	12.6	0.095	0.465	0.42	3.41			14000
	AB05BH0370	MOUTH	07/29/80	11:30 AM				14.4		-7-		0.07	1.36	0.07	3.19	150000	6600	14000
	AB05BH0370	MOUTH	07/29/80	12:00 PM			7.38		396	273	12.2		0.005	0.27		20000	5000	
	AB05BH0370	MOUTH	07/30/80	07:15 AM	14	4.5	7.4	6.5	191	201	8.7	0.11	0.335	0.15	2.1	39000	5200	0200
	AB05BH0370	MOUTH	08/01/80	04:50 PM				6.5				0.295	0.85		6.67	7700	1410	6300
	AB05BH0370	MOUTH	08/01/80	05:25 PM				15.7				0.18	0.85		4.33	83000	1280	28800
	AB05BH0370	MOUTH	08/06/80	07:00 AM	11	8.67	7.9	3.6	39.2	638	11.3	0.043	0.045	0.12	2.52	2100	280	236
	AB05BH0370	MOUTH	08/09/80	10:15 AM				13.8				0.206	0.36		2.85	200	128	356
	AB05BH0370	MOUTH	08/10/80	08:30 AM			7.5	5.1	53.2	463	11.1	0.053	0.44	L0.002	2.6	84000	1200	200
~	AB05BH0370	MOUTH	08/10/80	09:30 AM			7.52	4.8	44.6	459	11.1	0.051	0.115	0.1	2.76	56000	1010	200
	AB05BH0370	MOUTH	08/10/80	10:30 AM			7.72	4.3	66.6	452	11.3	0.058	0.165	L0.18	2.84	140000	1400	310
5	AB05BH0370	MOUTH	08/10/80	11:30 AM			7.2	4.5	47.2	448	10.8	0.11	0.15	L0.13	1.53	34000	480	180
2	AB05BH0370	MOUTH	08/11/80	08:30 AM							11.1							
ĀĀ	AB05BH0370	MOUTH	08/11/80	09:30 AM				4.8				0.1	0.1		1			
SK	AB05BH0370	MOUTH	08/11/80					4.8				0.1	0.1		1			
	AB05BH0370	MOUTH	08/11/80					4				0.1	0.1		1			
0	AB05BH0370			09:15 AM				4				0.05	0.153		2.4	4900	320	300
CONSULTING	AB05BH0370			12:00 PM	14	6.02	7.52	*	47.6	513	11.8			0.15				
S	AB05BH0370			06:15 AM	1-4	0.02		1				1	0.1		1			
ų	AB05BH0370	MOUTH		10:20 AM			7.8	4.8	25.2	471	13	0.05	0.12	0.16	2.2	18000	790	192
H	AB05BH0370			03:45 PM			7.35	6.7	60.4	-11	11.2	0.045	0.12	0.24	2.46	19000	500	500
Ň	AB05BH0370			03.45 PM 04:15 PM			7.5	7.7	99	481	12.6	0.045	0.18	0.32	2.82	18000	2500	300
(J									55 54	487	12.6	0.045	0.165	0.19	2.46	8200	300	100
	AB05BH0370 AB05BH0370			04:45 PM			7.4	6.2 5 3				0.045	0.185	0.19	2.40	7200	300	100
				05:15 PM			7.7	5.3	39.6 57	497	11.1	0.045	0.125	0.21	2.37	10000	900	100
	AB05BH0370	MOUTH	08/20/80	05:45 PM			7.55	5.4	57	490	11.5	0.045	0.14	0.2	٤.١	10000	300	100

i

	AB05BH0370	MOUTH		06:15 PM			7.7	5.3	61	494	11.8	0.045	0.16	0.14	2.16	7200	3500	200
	AB05BH0370	MOUTH	08/20/80	06:45 PM			7.4	5.3	51	501	10.8	0.045	0.14	0.12	10.98	8700	600	600
	AB05BH0370	MOUTH	08/27/80	07:30 AM				3.1				0.061	0.1		2.13	5000	300	
	AB05BH0370	MOUTH	08/27/80	10:00 AM			8.3		21.6	504	11.7			0.16				
	AB05BH0370	MOUTH	09/03/80	MA 00:80		6.85	7.56	9.6	36.4	452	11.1	0.086	0.184	0.02	2.59	9000	2800	1700
	AB05BH0370	MOUTH	09/10/80	07:45 AM				3				0.028	0.059		1.71	168	72	
	AB05BH0370	MOUTH	09/10/80	12:00 PM		14.8	8.43		25.6	636	8.1			0.02				
	AB05BH0370	MOUTH	09/17/80	07:00 AM		8.4	7.87	0.4	42.4	428	8.8	0.034	0.128	0.17	2.18	3100	480	
	AB05BH0370	MOUTH	09/24/80	09:15 AM		7.9	7.94	8.4	52	553	11.3	0.081	0.148	L0.002	4.38	4500	3300	370
	AB05BH0370	MOUTH	05/21/81	MA 00:00										0.054				
	AB05BH0390	MOUTH	08/17/82	10:10 AM			7.8		18		26.9	0.064	0.14	0.17	2.17			
	AB05BH0370	MOUTH	04/23/85	02:30 PM	7.3	9.3	7.6		38.4	832	14.6	0.106	0.315	0.31		310	190	
	AB05BH0370	MOUTH	05/14/85	02:10 PM	12.4	12.8	7.8	9.2	22.4	640	14.8	0.064	0.2	0.18		12500	3400	
	AB05BH0370	MOUTH	06/04/85	02:15 PM	14.5	11.7	8.33	2.7	20	740	10.6	0.076	0.146	0.3		120	10	
	AB05BH0370	MOUTH	06/27/85	01:45 PM	18.2	8.5	7.7	3.7	22.8	615	9.2	0.087	0.151	0.36		120	10	
	AB05BH0370	MOUTH	07/15/85	02:35 PM	21.3	5	7.4	11.7	14.4	451	21.6	0.24	0.35	0.47		29000	20	
	AB05BH0370	MOUTH	08/06/85	02:35 PM	20.4		8.2	8.3		560	10	0.026	0.18	L0.01		2400	200	
	AB05BH0370					10.4			L0.4							350	180	
		MOUTH	08/26/85	09:00 AM	14.5	5.9	7.4	2.7	28	560	9.8	0.076	0.144	0.24				
	AB05BH0370	MOUTH	09/19/85	09:30 AM	6.1	9.4	7.2	7	77	270	7.2	0.1	0.32	0.24		70000	1500	
	AB05BH0370	MOUTH	10/08/85	09:00 AM	3.6	11.2	7.2	6.5	16	635	11.2	0.018	0.072	0.05		9000	1200	
	AB05BH0370	MOUTH	10/29/85	12:30 PM	2.6	9.3	8	3.4	23	1050	8	0.049	0.104	0.3		3000	100	
	AB05BH0370	MOUTH	12/03/85	02:50 PM	0	9.9	8.34	1.7	1.3	625	5	0.03	0.047	0.01				
	AB05BH0370	MOUTH	01/28/86	01:30 PM	0	14.2	8.25	0.9	3.8	650	5.5	0.033	0.051	0.12		10000	200	
	AB05BH0370	MOUTH		11:15 AM	14.17	6.28	7.74	3.8	83			0.052	0.17	0.07		5000	200	
	AB05BH0370	MOUTH		01:40 PM					78				0.255					
	AB05BH0370	MOUTH		03:40 PM					92				0.255					
	AB05BH0370	MOUTH	08/15/93	05:40 PM					92				0.23					
	AB05BH0370	MOUTH	08/15/93	07:40 PM					78				0.22					
~	AB05BH0370	MOUTH	08/15/93	09:40 PM					198				0.305					
P.	AB05BH0370	MOUTH	08/15/93	11:40 PM					258				0.405					
1	AB05BH0370	MOUTH	08/16/93	01:40 AM					265				0.395					
	AB05BH0370	MOUTH	08/16/93	03:40 AM					131				0.215					
	AB05BH0370	MOUTH	08/16/93	05:40 AM					93				0.225					
	AB05BH0370	MOUTH	08/16/93	07:40 AM					81				0.195					
	AB05BH0370	MOUTH	08/16/93	09:00 AM					72				0.195					
	AB05BH0370	MOUTH	08/17/93	11:30 AM	14.93	6.72	7.63	3.6	170			0.094	0.315	0.06		3900	2300	
	AB05BH0370	MOUTH	09/13/93	09:15 AM	8.12	4.95	7.32	4.6	28			0.011	0.12	L0.01		3000	2000	
	AB05BH0370	MOUTH	09/13/93	09:20 AM			7.43	4.7	24			0.01	0.12	L0.01				
	AB05BH0370	MOUTH	11/17/93	01:50 PM	0.5	11.83	7.97	2.2	24			0.023	0.085	0.36		500	500	
	AB05BH0370	MOUTH	01/25/94	09:00 AM	0	8.99	7.68	4.5	20			0.005	0.068	0.44		3800	2100	
	AB05BH0370	MOUTH	03/22/94	09:00 AM	0.43	10.18	7.96	8.5	30			0.098	0.248	0.3		2400	530	
	AB05BH0370	MOUTH		11:45 AM	18.8	5.42	7.76	6.1	62			0.124	0.264	0.5		2700	11800	
	AB05BH0340	WEST 722	03/30/95	02:00 PM	10.0	0.74	1.10	0.1	3			0.127	0.052	0.0				
	AB05BH0340	WEST 722		11:30 AM					5				0.052	0.027				
~	AB05BH0340	WEST 722	04/05/95						-				0.061	0.027				
MAD.	AB05BH0340	WEST 722	04/13/95	10:30 AM					1				0.000	0.054				
9	AB05BH0340 AB05BH0340			01:30 PM					99 26									
. ≥		WEST 722		12:00 PM					36				0.157	0.146				
WA	AB05BH0340	WEST 722	06/06/95	03:15 PM			0.00		20				0.158	0.033				
ASKA	AB05BH0340	WEST 722	06/20/95	09:45 AM			8.26		9				0.126	0.017				
S	AB05BH0340	WEST 722		01:45 PM			8.46		9				0.129	0.022				
	AB05BH0340	WEST 722	08/10/95	09:25 AM			8.14		6				0.086	0.017			4 - -	
9	AB05BH0370	MOUTH		11:58 AM	15.38	7.06	7.97	2.5	32	588		0.053	0.135	0.143			480	
S	AB05BH0370	MOUTH	08/10/95	12:00 PM		_	8.07		31	591		0.054	0.13	0.142				
Ę	AB05BH0370	MOUTH	02/28/96	08:42 AM	-0.14	7.16	7.49	11.4	17	670		0.974	1.01	2.32			700	
CONSULTING	AB05BH0370	MOUTH	02/28/96	08:47 AM			7.51	13	17	665		0.963	1.03	2.41				
Z																		
<i></i>																		

I -

	STN NO AB05BH0390 AB05BH0370	MOUTH MOUTH	04/24/75 08/17/82 04/23/85 05/14/85 06/04/85 06/27/85 06/27/85 09/19/85 10/08/85 10/08/85 10/08/85 10/08/85 10/08/85 10/29/85 07/21/93 08/15/93 08/15/93 08/15/93 08/15/93	10:10 Al 10:10 Al 10:20 Pl 02:10 Pl 02:15 Pl 01:45 Pl 02:35 Pl 01:45 Pl 02:35 Pl 01:10 Pl 09:00 Al 09:00 Al 12:30 Pl 01:30 Pl 01:30 Pl 01:30 Pl 01:40 Pl 03:40 Pl 05:40 Pl 11:40 Al 05:40 Al 03:40 Al 05:40 Al	M 894 M 1356 M 1097 M 1142 M 1007 M 727 M 871 M 979 M 480 M 992 M 1885 M 1223 M 679 M 680 M 689 M 689 M 547 M 567 M 374 M 421 M 415 M 485	TALK 222 270 261 337 278 250 252 127 324 298 227 302 204	PALK 0 0 10.1 16.6 10.1 10.1 10.1 10.1 10.1	TURB 63 18 25 26 7.4 1.6 16 45 18 4.6 98.5	HARD 280 307.14 341.07 366.68 293.47 250.5 293.94 256.61 117.99 395.65 366.84 353.98 339.18 233.7	NA 53 75 180 125 103 65 83 95 43 85 255 100 91 62.1	MG 26 46.1 40 48 49 33.4 28 37.4 30.7 13.3 53 46 58 49 28.3	CA 64.1 57 57.4 66 62.4 58 52.1 25.3 71 71 46.1 75 46.9	K 5.9 5.6 13.2 7.2 6.7 5.9 5.7 4.68 6.8 4.68 6 17.8 4.93 5 4.3	SO4 124 189 200 226 171 192 185 75 180 146 221 195 104	CL 15 30 54 53 70 34.2 31.4 33.7 37 310 50.5 51 31.9	HCO3 304.75 277.69 410.8 338.88 257.21 304.75 307.19 154.81 394.96 363.26 276.71 368.14 248.7	CO3 19.92 L0.5 L0.5 L0.5 L0.5 L0.5 L0.5 L0.5 L0.5	DOC 25 13.8 14.4 10.2 8.7 9.4 9.4 6.8 11 7 4.8 5.3	DIC 59 55 72 71 60 45 51.5 52 24.5 74 63 52 66	TKN 1.78 1.56 1.36 1.36 1.7 0.3 1 1.16 0.88 1.2 0.46 0.68 0.4	NIT 1.1 0.76 0.93 0.83 0.5 0.32 0.7 1.28 1.84 2.14 3.75 2.8 1.06	SI 4 3.8 2.25 3.5 3.24 L0.02 3.25 3.3 3.2 7.75 4.9	HENOLI 0.003 0.013 0.007 0.009 0.002 0.01 0.015 0.004 0.003 0.01 0.007 0.017 0.007 0.001	РНУТО 8.25 8.447 15.196 52.75 16.436 5.12 1.35 4.868
	AB05BH0370 AB05BH0370 AB05BH0370 AB05BH0370 AB05BH0370 AB05BH0370 AB05BH0370 AB05BH0370	MOUTH MOUTH MOUTH MOUTH MOUTH MOUTH	08/17/93	11:30 AM 09:15 AM 09:20 AM 01:50 PM 09:00 AM	M 482 M 777 M M 212 M 2060 M 827	143 222 222 426 337 274	L0.1 L0.1 L0.1 L0.1 L0.1 L0.1	218.8 34.7 34.6 40.2 32.9 38.7	165.2 292.4 295.7 527 477 293	36.8 62.1 62.1 300 294 79.5	19.6 37.7 38.5 65.5 56 36.8	33.8 54.9 54.9 103 98.5 56.5	4.7 4.7 4.8 10.4 6.62 19.9	62 147 150 232 204 135	25.1 41.5 42 348 360 44.2	174.3 270.6 270.6 519 411 334	L0.5 L0.5 L0.5 L0.5 L0.5 L0.5			1.2 1.28 1.08 3.68 1 2.8 1.96	0.789 1.17 1.18 2.22 3.08 0.924 1.13		L0.001 L0.001 L0.001 L0.001 L0.001 L0.001	
A8	AB058H0370 AB058H0370 AB058H0370 AB058H0370	Mouth Mouth	08/10/95 08/10/95 02/28/96 02/28/96	11:58 AM 12:00 PM 08:42 AM	M 873 M 873 M 934	264 265 299 297	LO.1 LO.1	37 38 37 33	310 308 309 359	79 80 87.4 89.7	39 39 36 38.7	60 59 64.2 79.9	4.5 4.5 34.4 36.8	156 154 178 173	35.3 35.6 59.8 58	322 323 364 362	L0.5 L0.5	9.5 10 20.5		0.98 0.93 6 6.75	1.26 1.27 1.41 1.36	4 4 15 15.2		
	STN NO AB05BH039		H 04/	ATE 24/75	TIME 10:00 AM	AL		v	MN 0.068	FE 0.4	1	NI L0.001	AS-T	CI	D	HG-T	CO L0.001	SE-T	г	BE-D	BA	Ν	10	AU
	AB05BH039 AB05BH037 AB05BH037 AB05BH037	D MOUT	H 04/ H 05/	14/85	10:10 AM 02:30 PM 02:10 PM 02:15 PM	0.13 L0.01	(0.001	0.06 0.17	0.2 0.4 L0.0 0.02	6 01	0.002 0.003	0.0012	L0.0	001	L0.1 L0.1 L0.1								
	AB05BH037 AB05BH037	D MOUT	H 06/ H 07/	27/85 15/85	01:45 PM 02:35 PM	0.08	(0.001	0.115	0.0 0.3	8 4	0.003	0.0026	L0.0	001	LO.1 LO.1								
	AB05BH037 AB05BH037 AB05BH037	D MOUT	H 08/	26/85	01:10 PM 09:00 AM 09:30 AM					0.0 0.0 0.1	6					L0.1 L0.1 L0.1								
MADA	AB05BH037 AB05BH037 AB05BH037	D MOUT	H 10/	29/85	09:00 AM 12:30 PM 02:50 PM	0.06	(0.002	0.047	0.3 0.2 0.0	3	L0.001	0.0011	L0.0	001	L0.1 L0.1 L0.1								
WASKA CONSULTING	AB05BH037/ AB05BH037/ AB05BH037/ AB05BH037/ AB05BH037/ AB05BH037/ AB05BH037/	MOUT MOUT MOUT MOUT MOUT MOUT	H 07/2 H 08/ H 09/ H 09/2 H 11/2 H 01/2	21/93 17/93 13/93 13/93 17/93 25/94	01:30 PM 11:15 AM 11:30 AM 09:15 AM 09:20 AM 01:50 PM 09:00 AM	1.13 2.57 0.15 0.65 0.68 0.53			0.089 0.099 0.069 0.073 0.068 0.08	0.2 1.7 3.8 0.5 0.8 1.0 0.7	9 9 1 4 2 3	0.003 0.006 0.001 L0.001 L0.001 0.002				L0.1 L0.05 L0.05								
NG	AB05BH0370 AB05BH0370 AB05BH0370 AB05BH0370 AB05BH0370	MOUT	H 08/ ⁻ H 08/- H 02/2	10/95 10/95 28/96	09:00 AM 11:58 AM 12:00 PM 08:42 AM 08:47 AM	0.7 0.21 0.14	().006).005).003).009	0.113 0.057 0.058 0.12 0.111	1.2 1.0 1.1 0.6 0.6	2 5	L0.001 0.001 0.003 0.0235 0.0223	0.002 0.0019 0.001 0.0007	LO.0 LO.0 LO.0 LO.0)01)01 002	0.05 L0.04 L0.04 L0.05 L0.05	0.001 0.001	0.000 0.000 0.001 0.001	9 3	L0.001 L0.001	0.095 0.096 0.12 0.11			L0.2 L0.2

STN NO	STN NAME	DATE	TIME	CR	CU	ZN	PB
AB05BH0390	MOUTH	04/24/75	10:00 AM		L0.001		0.01
AB05BH0250	SEWER 27	05/08/80	10:00 AM	L0.003	0.002	0.003	L0.002
AB05BH0250	SEWER 27	05/23/80	02:45 PM	L0.003	0.035	0.4	0.94
AB05BH0250	SEWER 27	05/23/80	03:15 PM	L0.003	0.027	0.22	0.62
AB05BH0250	SEWER 27	05/23/80	03:45 PM	0.005	0.025	0.22	0.5
AB05BH0250	SEWER 27	05/23/80	04:15 PM	L0.003	0.027	0.17	0.45
AB05BH0250	SEWER 27	05/24/80	10:00 AM	L0.003	0.014	0.013	0.006
AB05BH0250	SEWER 27	05/25/80	11:00 AM	L0.003	0.012	0.053	0.085
AB05BH0250	SEWER 27	05/25/80	11:35 AM	L0.003	0.012	0.053	1.55
AB05BH0250	SEWER 27	05/25/80	11:50 AM	L0.003	0.011	0.053	1.04
AB05BH0250	SEWER 27	05/25/80	12:00 PM	L0.003	0.01	0.049	1.22
AB05BH0250	SEWER 27	05/25/80	12:05 PM	L0.003	0.011	0.053	0.76
AB05BH0250	SEWER 27	05/25/80	12:35 PM	0.011	0.01	0.069	0.54
AB05BH0250	SEWER 27	05/25/80	01:05 PM	L0.003	0.009	0.049	0.32
AB05BH0250	SEWER 27	05/25/80	01:35 PM	0.005	0.01	0.052	0.21
AB05BH0250	SEWER 27	05/25/80	02:05 PM	0.006	0.015	0.048	0.87
AB05BH0250	SEWER 27	05/25/80	06:30 PM	0.005	0.006	0.011	0.023
AB05BH0250	SEWER 27	05/25/80	07:30 PM	0.005	0.008	0.026	0.2
AB05BH0250	SEWER 27	05/25/80	08:00 PM	0.01	0.028	0.13	3.43
AB05BH0250	SEWER 27	05/25/80	08:20 PM	L0.003	0.035	0.25	0.78
AB05BH0250	SEWER 27	05/25/80	08:35 PM	L0.003	0.042	0.23	0.63
AB05BH0250	SEWER 27	05/25/80	08:50 PM	0.011	0.027	0.13	0.28
AB05BH0250	SEWER 27	05/25/80	09:15 PM	0.014	0.023	0.082	2.53
AB05BH0250	SEWER 27	05/25/80	09:40 PM	0.006	0.025	0.092	1.94
AB05BH0250	SEWER 27	05/25/80	10:10 PM	0.012	0.028	0.088	1.87
AB05BH0250	SEWER 27	05/25/80	10:30 PM	L0.003	0.021	0.07	1.06
AB05BH0250	SEWER 27	05/25/80	11:10 PM	L0.003	0.021	0.045	4.77
AB05BH0250	SEWER 27	05/26/80	02:40 PM	L0.003	0.031	0.15	0.42
AB05BH0250	SEWER 27	05/26/80	03:00 PM	L0.003	0.021	0.16	0.35
AB05BH0250	SEWER 27	05/26/80	03:15 PM	L0.003	0.02	0.15	0.29
AB05BH0250	SEWER 27	05/26/80	03:35 PM	0.005	0.019	0.22	0.21
AB05BH0250	SEWER 27	05/26/80	04:00 PM	0.005	0.02	0.18	0.21
AB05BH0250	SEWER 27	05/26/80	04:20 PM	0.006	0.036	0.12	0.45
AB05BH0250	SEWER 27	05/26/80	04:30 PM	0.006	0.018	0.13	0.25
AB05BH0250	SEWER 27	05/26/80	05:00 PM	0.013	0.025	0.19	0.25
AB05BH0250	SEWER 27	05/26/80	05:30 PM	0.009	0.025	0.15	0.25
AB058H0250	SEWER 27	05/28/80	06:00 PM	L0.003	0.009	0.062	0.051
AB05BH0250	SEWER 27	05/28/80	06:15 PM	0.027	0.036	0.35	0.87
AB05BH0250	SEWER 27	05/28/80	06:30 PM	L0.003	0.023 0.026	0.22 0.17	0.38 0.29
AB05BH0250 AB05BH0250	SEWER 27 SEWER 27	05/28/80 05/28/80	06:45 PM 07:00 PM	L0.003 L0.003	0.028	0.17	0.29
AB05BH0250	SEWER 27	05/28/80	07:30 PM	L0.003	0.023	0.18	0.28
AB05BH0250		05/28/80				0.15	0.27
AB05BH0250	SEWER 27 SEWER 27	05/28/80	08:00 PM 08:30 PM	L0.003 L0.003	0.018 0.015	0.07	0.2
AB05BH0250	SEWER 27	05/28/80	03:00 PM	0.008	0.015	0.28	3.2
AB05BH0250	SEWER 27	06/01/80	03:15 PM	0.008	0.32	0.32	3.9
AB05BH0250	SEWER 27	06/01/80	03:30 PM	0.007	0.02	0.32	0.37
AB05BH0250	SEWER 27	06/01/80	03:45 PM	0.015	0.02	0.081	0.37
AB05BH0250	SEWER 27	06/01/80	03:45 PM	L0.003	0.013	0.09	0.2
AB05BH0250	SEWER 27	06/01/80	04:30 PM	0.005	0.012	0.072	0.12
AB05BH0250	SEWER 27	06/01/80	04.30 PM	L0.003	0.011	0.072	0.15
AB05BH0250	SEWER 27	06/01/80	05:30 PM	L0.003	0.010	0.072	
AB05BH0250	SEWER 27	06/01/80	05:30 PM	L0.003	0.027	0.034	0.068 0.057
AB05BH0250	SEWER 27	06/10/80	10:35 AM	L0.003	0.012	0.053	0.028
AB05BH0250	SEWER 27	06/14/80	03:30 PM	L0.003	0.009	0.006	L0.002
AB05BH0250	SEWER 27	06/14/80	03:45 PM	L0.003	0.048	0.68	1.33
AB05BH0250	SEWER 27	06/14/80	03.45 PM	L0.003	0.043	0.54	0.92
AB05BH0250	SEWER 27	06/14/80	04:15 PM	0.007	0.045	0.29	0.35
AB05BH0250	SEWER 27	06/14/80	04:30 PM	0.003	0.039	0.31	0.3
AB05BH0250	SEWER 27	06/14/80	05:00 PM	0.003	0.026	0.24	0.25
AB05BH0250	SEWER 27	06/14/80	05:30 PM	L0.003	0.022	0.16	0.20
AB05BH0250	SEWER 27	06/14/80	06:00 PM	L0.003	0.012	0.056	0.069
AB05BH0250	SEWER 27	06/14/80	06:30 PM	L0.003	0.012	0.064	0.038
AB05BH0250	SEWER 27	06/22/80	05:00 PM	L0.003	0.005	0.04	0.02
AB05BH0250	SEWER 27	06/22/80	05:15 PM	L0.003	0.015	0.145	0.009
AB05BH0250	SEWER 27	06/22/80	05:30 PM	0.005	0.02	0.15	0.17
AB05BH0250	SEWER 27	06/22/80	05:45 PM	L0.003	0.032	0.225	0.28
AB05BH0250	SEWER 27	06/22/80	06:00 PM	L0.003	0.05	0.45	0.825
AB05BH0250	SEWER 27	06/22/80	06:30 PM	L0.003	0.019	0.14	0.26
AB05BH0250	SEWER 27	06/22/80	07:00 PM	L0.003	0.015	0.15	0.1
AB05BH0250	SEWER 27	06/22/80	07:30 PM	L0.003	0.011	0.064	0.074
AB05BH0250	SEWER 27	06/22/80	08:00 PM	L0.003	0.01	0.061	0.059
AB05BH0250	SEWER 27	07/09/80	07:55 AM	L0.003	0.008	0.016	0.003
AB05BH0250	SEWER 27	07/18/80	06:00 PM	0.003	0.002	0.008	0.005
AB05BH0250	SEWER 27	07/18/80	06:30 PM	L0.003	0.002	0.012	0.005
AB05BH0250	SEWER 27	07/18/80	06:45 PM	0.003	0.044	0.515	0.61
AB05BH0250	SEWER 27	07/18/80	06:55 PM	0.003	0.07	0.42	0.51
AB05BH0250	SEWER 27	07/18/80	07:15 PM	L0.003	0.03	0.3	0.405
AB05BH0250	SEWER 27	07/18/80	07:30 PM	L0.003	0.035	0.16	0.26
AB05BH0250	SEWER 27	07/18/80	08:00 PM	0.005	0.027	0.22	0.17
AB05BH0250	SEWER 27	07/18/80	08:30 PM	0.004	0.037	0.076	0.074
AB05BH0250	SEWER 27	07/18/80	09:00 PM	L0.003	0.033	0.057	0.056
AB05BH0250	SEWER 27	07/18/80	09:30 PM	L0.003	0.005	0.025	0.021
						۸ (.

AB05BH0250	SEWER 27	08/10/80	07:45 AM			0.12	
AB05BH0250	SEWER 27	08/10/80	05:50 PM	L0.003	0.002	0.022	0.015
AB05BH0250	SEWER 27	08/10/80	07:15 PM	L0.003	0.006	0.006	L0.002
AB05BH0250	SEWER 27	08/10/80	07:30 PM	0.003	0.031	0.14	0.21
AB05BH0250	SEWER 27	08/10/80	07:45 PM	0.004	0.035	0.12	0.23
AB05BH0250	SEWER 27	08/10/80	08:00 PM	0.005	0.028	0.086	0.13
AB05BH0250	SEWER 27	08/10/80	08:15 PM	0.004	0.025	0.074	0.084
AB05BH0250	SEWER 27	08/10/80	08:45 PM	L0.003	0.022	0.053	0.051
AB05BH0250	SEWER 27	08/10/80	09:15 PM	0.003	0.019	0.029	0.05
AB05BH0250	SEWER 27	08/10/80	09:45 PM	L0.003	0.018	0.025	0.027
AB05BH0250	SEWER 27	08/10/80	10:15 PM	L0.003	0.015	0.02	0.018
AB05BH0250	SEWER 27	08/20/80	10:30 AM	L0.003	0.015	0.22	0.005
AB05BH0250	SEWER 27	08/20/80	03:00 PM	L0.003	0.01	0.019	0.005
AB05BH0250	SEWER 27	08/20/80	03:15 PM	L0.003	0.067	0.51	0.75
AB05BH0250	SEWER 27	08/20/80	03:30 PM	0.003	4.3	0.74	1.6
AB05BH0250	SEWER 27	08/20/80	03:45 PM	L0.003	0.073	0.46	0.5
AB05BH0250	SEWER 27	08/20/80	04:00 PM	L0.003	0.071	0.24	0.33
AB05BH0250	SEWER 27	08/20/80	04:30 PM	0.003	0.039	0.089	0.25
AB05BH0250	SEWER 27	08/20/80	05:00 PM	L0.003	0.34	0.19	0.14
AB05BH0250	SEWER 27	08/20/80	05:30 PM	L0.003	0.035	0.055	0.059
AB05BH0250	SEWER 27	08/20/80	06:00 PM	L0.003	0.038	0.041	0.042
AB05BH0260	SEWER 13	05/25/80	12:00 PM	L0.003	0.042	0.24	2.06
AB05BH0260	SEWER 13	05/26/80	02:15 PM	L0.003	0.021	0.077	0.12
AB05BH0260	SEWER 13	05/26/80	02:45 PM	L0.003	0.019	0.09	0.078
AB05BH0260	SEWER 13	05/26/80	03:00 PM	L0.003	0.029	0.086	1.7
AB05BH0260	SEWER 13	05/26/80	03:15 PM	L0.003	0.02	0.15	0.29
AB05BH0260	SEWER 13	05/26/80	03:30 PM	L0.003	0.049	0.29	
AB05BH0260	SEWER 13	05/26/80	03:50 PM	L0.003	0.042	0.27	1.38
AB05BH0260	SEWER 13	05/26/80	04:15 PM	0.006	0.036	0.12	0.45
AB05BH0260	SEWER 13	05/26/80	04:50 PM	0.007	0.033	0.11	0.41
AB05BH0260	SEWER 13	05/26/80	05:20 PM	0.007	0.036	0.16	0.3
AB05BH0260	SEWER 13	06/09/80	09:00 AM	L0.003	0.018	0.019	0.021
AB05BH0260	SEWER 13	06/11/80	12:00 PM	L0.003	0.003	0.005	0.006
AB05BH0260	SEWER 13	06/14/80	05:00 AM	0.003	0.026	0.24	0.25
AB05BH0260	SEWER 13	06/19/80	08:10 PM	L0.003	0.39	1.07	1.77
AB05BH0260	SEWER 13	06/19/80	08:15 PM	L0.003	0.044	0.44	0.46
AB05BH0260	SEWER 13	06/19/80	08:30 PM	L0.003	0.038	0.28	0.33
AB05BH0260	SEWER 13	06/19/80	08:45 PM	L0.003	0.032	0.24	0.25
AB05BH0260	SEWER 13	06/19/80	09:00 PM	L0.003	0.03	0.18	0.18
AB05BH0260	SEWER 13	06/19/80	09:30 PM	L0.003	0.044	0.16	0.19
AB05BH0260	SEWER 13	06/19/80	10:00 PM	L0.003	0.036	0.12	0.15
AB05BH0260	SEWER 13	06/19/80	10:20 PM	0.011	0.035	0.098	0.18
AB05BH0260	SEWER 13	06/26/80	01:25 PM	0.004	0.016	0.015	0.016
AB05BH0260	SEWER 13	06/26/80	01:30 PM	0.004	0.14	0.87	1.45
AB05BH0260	SEWER 13	06/26/80	01:45 PM	0.006	0.11	0.425	0.47
AB05BH0260	SEWER 13	06/26/80	02:00 PM	0.007	0.085	0.25	0.26
AB05BH0260	SEWER 13	06/26/80	02:15 PM	0.006	0.1	0.395	0.38
AB05BH0260	SEWER 13	06/26/80	02:45 PM	0.007	0.16	0.585	0.75
AB05BH0260	SEWER 13	06/26/80	03:15 PM	0.005	0.155	0.5	0.605
AB05BH0260	SEWER 13	06/26/80	03:45 PM	0.003	0.088	0.35	0.355
AB05BH0260	SEWER 13	06/26/80	04:15 PM	0.005	0.054	0.19	0.24
AB05BH0260	SEWER 13	07/09/80	08:15 AM	L0.003	0.012	0.019	L0.002
AB05BH0260	SEWER 13	07/31/80	11:00 AM	L0.003	0.004	0.008	0.004
AB05BH0300	US AIRDRIE	04/16/80	09:35 AM	0.005	0.019	0.013	0.004
AB05BH0300	US AIRDRIE	04/22/80	12:05 PM	0.008	0.002	0.003	L0.002
AB05BH0300	US AIRDRIE	04/29/80	06:30 PM	L0.003	0.002	0.006	0.009
AB05BH0300	US AIRDRIE	04/30/80	11:20 AM	L0.003	0.001	0.003	L0.002
AB05BH0300	US AIRDRIE	05/06/80	12:00 PM	0.005	0.001	0.004	L0.002
AB05BH0300	US AIRDRIE	05/08/80	09:50 AM	L0.003	0.002	0.005	0.008
AB05BH0300	US AIRDRIE	05/21/80	11:20 AM	L0.003	0.003	0.004	0.008
AB05BH0300	US AIRDRIE	05/28/80	08:45 AM	0.007	0.025	0.054	1.6
AB05BH0300	US AIRDRIE	06/01/80	06:20 PM	L0.003	0.003	0.013	0.005
AB05BH0300	US AIRDRIE	06/04/80	09:00 AM	L0.003	0.002	0.005	0.008
AB05BH0300	US AIRDRIE	06/11/80	MA 00:00	L0.003	0.003	0.006	L0.002
AB05BH0300	US AIRDRIE	06/18/80	08:50 AM	L0.003	0.003	0.004	L0.002
AB05BH0300	US AIRDRIE	06/25/80	09:00 AM	0.003	0.006	0.002	L0.002
AB05BH0300	US AIRDRIE	07/02/80	MA 00:00	0.005	0.017	0.013	L0.002
AB05BH0300	US AIRDRIE	07/09/80	09:00 AM	L0.003	0.015	0.019	L0.002
AB05BH0300	US AIRDRIE	07/16/80	08:40 AM	0.004	0.002	0.006	L0.002
AB05BH0300		07/23/80	12:00 PM	L0.003	L0.001	0.023	0.005
AB05BH0300		07/30/80	09:50 AM	0.003	0.016	0.008	0.006
AB05BH0300		08/06/80	07:50 AM	L0.003	L0.001	0.012	0.004
AB05BH0300		08/13/80	08:30 AM	L0.003	0.004	0.011	0.007
AB05BH0300		08/20/80	08:30 AM	L0.003	0.006	0.011	0.002
AB05BH0300 AB05BH0300		08/20/80	03:45 PM	0.003	0.015	0.025	0.28
AB05BH0300 AB05BH0310		08/27/80	08:30 AM	L0.003	0.002	0.006	0.003
AB05BH0310	DS AIRDRIE DS AIRDRIE	04/16/80 04/16/80	09:45 AM 01:00 PM	0.008 0.003	0.002 0.003	0.005 0.006	0.004
AB05BH0310	DS AIRDRIE	04/10/80	01:00 PM	0.003	0.003	0.006	0.01 0.004
AB05BH0310	DS AIRDRIE	04/22/80	11:40 AM	0.009	0.003	0.01	0.004
AB05BH0310	DS AIRDRIE	05/06/80	12:25 PM	L0.003	0.004	0.007	L0.002
AB05BH0310	DS AIRDRIE	05/14/80	11:30 AM	L0.003	0.002	0.004	L0.002
AB05BH0310	DS AIRDRIE	05/21/80	12:45 PM	L0.003	0.002	0.008	4
AB05BH0310	DS AIRDRIE	05/28/80	09:15 AM	L0.003	0.000	0.032	0.034
					3.91	0.002 A 1/	
						~ ~ ~ ~ ~	

AB05BH0310	DS AIRDRIE	06/01/80	06:40 PM	L0.003	0.005	0.015	L0.002
AB05BH0310	DS AIRDRIE	06/04/80	09:30 AM	L0.003	0.005	0.029	0.006
AB05BH0310	DS AIRDRIE	06/11/80	09:30 AM	L0.003	0.003	0.011	L0.002
AB05BH0310	DS AIRDRIE	06/18/80	09:10 AM	L0.003	0.003	0.004	0.003
AB05BH0310	DS AIRDRIE	06/25/80	09:15 AM	0.004	0.008	0.19	0.003
AB05BH0310	DS AIRDRIE	07/02/80	09:30 AM	0.008	0.018	0.02	L0.002
AB05BH0310	DS AIRDRIE	07/09/80	09:30 AM	L0.003	0.008	0.013	L0.002
AB05BH0310	DS AIRDRIE	07/16/80	09:00 AM	L0.003	0.002	0.006	0.004
AB05BH0310	DS AIRDRIE	07/23/80	12:00 PM	0.003	0.002	0.19	0.003
AB05BH0310	DS AIRDRIE	07/30/80	10:00 AM	0.003	0.02	0.049	0.002
AB05BH0310	DS AIRDRIE	08/06/80	12:00 PM	0.003	0.021	0.012	0.005
AB05BH0310	DS AIRDRIE	08/13/80	09:00 AM	L0.003	0.008	0.009	0.006
AB05BH0310	DS AIRDRIE	08/20/80	08:50 AM	0.003	0.006	0.005	L0.002
AB05BH0310	DS AIRDRIE	08/27/80	MA 00:00	L0.003	0.004	0.023	0.006
AB05BH0310	DS AIRDRIE	09/03/80	08:45 AM	L0.003	0.002	0.016	0.004
AB05BH0310	DS AIRDRIE	09/10/80	12:00 PM	L0.003	0.002	0.015	L0.002
AB05BH0310	DS AIRDRIE	09/17/80	09:40 AM	0.004	0.003	0.008	0.012
AB05BH0310	DS AIRDRIE	09/24/80	07:05 AM	L0.003	0.002	0.003	0.011
AB05BH0320	NOSE 564	04/09/80	01:00 PM	0.005	0.01	0.017	L0.003
AB05BH0320	NOSE 564	04/16/80	01:25 PM	0.007	0.002	0.006	L0.002
AB05BH0320	NOSE 564	04/22/80	11:45 AM	0.009	0.002	0.004	0.006
AB05BH0320	NOSE 564	04/30/80	11:00 AM	L0.003	0.002	0.003	0.004
AB05BH0320	NOSE 564	05/06/80	11:15 AM	L0.003	0.002	0.002	L0.002
AB05BH0320	NOSE 564	05/14/80	10:30 AM	L0.003	L0.001	0.001	L0.002
AB05BH0320	NOSE 564	05/21/80	10:40 AM	L0.003	0.036	0.025	5.83
AB05BH0320	NOSE 564	05/28/80	09:30 AM	0.01	0.007	0.022	0.023
AB05BH0320	NOSE 564	06/04/80	09:45 AM	L0.003	0.008	0.016	0.016
					0.003	0.006	L0.002
AB05BH0320	NOSE 564	06/11/80	09:55 AM	L0.003			
AB05BH0320	NOSE 564	06/14/80	06:05 PM	L0.003	0.003	0.005	L0.002
AB05BH0320	NOSE 564	06/18/80	10:00 AM	L0.003	0.004	0.005	L0.002
AB05BH0320	NOSE 564	06/19/80	10:30 PM	L0.003	0.002	0.002	L0.002
AB05BH0320	NOSE 564	06/22/80	12:00 PM	L0.003	0.002	0.011	0.002
AB05BH0320	NOSE 564	06/25/80	09:50 AM	0.003	0.003	0.005	L0.002
AB05BH0320	NOSE 564	06/26/80	04:10 PM	0.004	0.015	0.012	0.006
AB05BH0320	NOSE 564	07/02/80	09:45 AM	0.007	0.016	0.014	L0.002
AB05BH0320	NOSE 564	07/09/80	09:45 AM	0.003	0.006	0.019	0.005
AB05BH0320	NOSE 564	07/16/80	09:15 AM	L0.003	0.003	0.009	L0.002
AB05BH0320	NOSE 564	07/23/80	09:10 AM	0.003	0.004	0.1	0.004
AB05BH0320	NOSE 564	07/29/80	12:30 PM	0.005	0.002	0.056	L0.002
AB05BH0320	NOSE 564	07/30/80	10:10 AM	L0.003	0.021	0.042	0.007
AB05BH0320	NOSE 564	08/06/80	09:05 AM	0.004	0.02	0.037	L0.002
AB05BH0320	NOSE 564	08/13/80	09:15 AM	L0.003	0.009	0.036	0.005
AB05BH0320	NOSE 564	08/20/80	09:00 AM	0.003	0.012	0.014	L0.002
AB05BH0320	NOSE 564	08/20/80	07:05 PM	0.003	0.004	0.017	0.005
AB05BH0320	NOSE 564	08/27/80	09:15 AM	L0.003	0.004	0.008	0.008
AB05BH0320	NOSE 564	09/03/80	09:10 AM	L0.003	0.005	0.009	0.003
AB05BH0320	NOSE 564	09/17/80	09:10 AM	0.003	0.004	0.73	0.01
AB05BH0320	NOSE 564	09/24/80	08:00 AM	L0.003	0.001	0.003	L0.002
AB05BH0330	NOSE US W	04/09/80	12:10 PM	0.005	0.011	0.046	L0.003
AB05BH0330	NOSE US W	04/16/80	12:50 PM	0.007	0.003	0.008	0.003
AB05BH0330	NOSE US W	04/22/80	10:40 AM	0.008	0.004	0.004	L0.002
		04/30/80					
AB05BH0330	NOSE US W		10:15 AM	L0.003	0.002	0.002	0.003
AB05BH0330	NOSE US W	05/06/80	10:20 AM	L0.003	0.002	0.004	0.004
AB05BH0330	NOSE US W	05/14/80	09:40 AM	L0.003	0.02	0.009	1.7
AB05BH0330	NOSE US W	05/16/80	10:05 AM	0.004	0.001	0.005	0.004
AB05BH0330	NOSE US W	05/21/80	09:45 AM	L0.003	0.002	L0.001	0.003
AB05BH0330	NOSE US W	05/23/80	02:45 PM	L0.003	0.001	L0.001	0.004
AB05BH0330			10:55 AM				
	NOSE US W	05/28/80		L0.003	0.021	0.025	1.6
AB05BH0330	NOSE US W	06/04/80	11:00 AM	0.005	0.008	0.008	0.004
AB05BH0330	NOSE US W	06/11/80	01:15 AM	L0.003	0.005	0.005	L0.002
AB05BH0330	NOSE US W	06/11/80	01:50 AM	L0.003	0.01	0.022	0.01
AB05BH0330	NOSE US W	06/11/80	02:20 AM	L0.003	0.006	0.008	0.006
AB05BH0330	NOSE US W	06/11/80	02:50 AM	L0.003	0.004	0.004	0.004
AB05BH0330	NOSE US W	06/11/80	11:05 AM	L0.003	0.003	0.001	L0.002
AB05BH0330	NOSE US W						
		06/11/80	12:15 PM	L0.003	0.004	0.005	0.008
AB05BH0330	NOSE US W	06/11/80	12:45 PM	L0.003	0.005	0.005	0.002
AB05BH0330	NOSE US W	06/18/80	11:45 AM	L0.003	0.002	0.002	L0.002
AB05BH0330	NOSE US W	06/19/80	10:10 AM	L0.003	0.002	0.002	0.006
AB05BH0330	NOSE US W	06/22/80	08:20 PM	L0.003	0.004	0.016	L0.002
AB05BH0330	NOSE US W	06/25/80	11:10 AM	0.003	0.002	0.004	0.003
AB05BH0330	NOSE US W	06/26/80	12:00 PM	0.003	0.016	0.016	L0.002
AB05BH0330	NOSE US W	07/02/80	10:55 AM	0.006	0.008	0.023	L0.002
AB05BH0330	NOSE US W	07/09/80	10:50 AM	L0.003	0.002	0.011	0.002
AB05BH0330	NOSE US W	07/23/80	10:45 AM	L0.003	0.002	0.003	0.005
AB05BH0330	NOSE US W	07/30/80	08:30 AM	0.003	0.021	0.01	0.003
AB05BH0330	NOSE US W	08/06/80	10:40 AM	L0.003	0.021	0.029	0.005
AB05BH0330	NOSE US W	08/10/80	07:30 AM	L0.003	0.008	0.009	L0.002
AB05BH0330	NOSE US W	08/10/80	08:30 AM	0.003	0.032	0.026	0.003
AB05BH0330							
	NOSE US W	08/11/80	09:30 AM	L0.003	0.005	0.013	L0.002
AB05BH0330	NOSE US W	08/11/80	10:30 AM	0.003	0.04	0.2	0.1
AB05BH0330	NOSE US W	08/13/80	09:50 AM	L0.003	0.005	0.011	L0.002
AB05BH0330	NOSE US W	08/20/80	09:45 AM	L0.003	0.003	0.063	0.002
AB05BH0330	NOSE US W	08/27/80	09:45 AM	L0.003	0.004	0.006	0.006
AB05BH0330	NOSE US W	09/03/80	12:00 PM	L0.003	0.004	0.008	L0.002

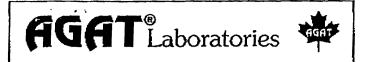
14 T

AB05BH0350	WEST 24	04/09/80	12:30 PM	0.004	0.013	0.017	L0.003
AB05BH0350	WEST 24	04/16/80	01:00 PM	0.003	0.001	0.004	0.004
AB05BH0350	WEST 24	04/22/80	11:05 AM	0.000		0.001	0.002
					0.001		
AB05BH0350	WEST 24	04/30/80	10:40 AM	L0.003	0.001	0.002	L0.002
AB05BH0350	WEST 24	05/06/80	10:45 AM	L0.003	L0.001	L0.001	L0.002
AB05BH0350	WEST 24	05/14/80	10:00 AM	L0.003	L0.001	0.002	L0.002
AB05BH0350	WEST 24	05/21/80	10:10 AM	L0.003	0.004	0.008	0.005
AB05BH0350	WEST 24	05/28/80	10:00 AM				
				L0.003	0.032	0.024	0.9
AB05BH0350	WEST 24	06/04/80	10:00 AM	L0.003	0.002	0.018	0.003
AB05BH0350	WEST 24	06/11/80	03:30 AM	L0.003	0.002	0.03	0.003
AB05BH0350	WEST 24	06/14/80	05:50 AM	L0.003	0.001	L0.001	L0.002
AB05BH0350	WEST 24	06/18/80	10:35 AM	L0.003	0.001	0.102	L0.002
AB05BH0350	WEST 24	06/19/80	10:00 AM	L0.003	L0.001	L0.001	0.004
AB05BH0350	WEST 24	06/22/80	12:00 PM	L0.003	L0.001	L0.001	L0.002
AB05BH0350	WEST 24	06/25/80	10:10 AM	0.003	0.001	L0.001	L0.002
AB05BH0350	WEST 24	06/26/80	03:45 PM	L0.003	0.015	0.017	L0.002
AB05BH0350	WEST 24	07/02/80	10:15 AM	L0.003	0.009	0.021	0.003
AB05BH0350	WEST 24	07/09/80	10:10 AM	L0.003	0.01	0.012	L0.002
AB05BH0350	WEST 24	07/16/80	07:30 AM	L0.003	0.004	0.006	0.002
AB05BH0350	WEST 24	07/23/80	06:45 AM	0.003	0.002	0.005	L0.002
AB05BH0350	WEST 24	07/29/80	12:00 PM	L0.003	L0.001	0.026	0.006
AB05BH0350	WEST 24	07/30/80	07:30 AM	L0.003	L0.001	0.021	0.012
AB05BH0350	WEST 24	08/06/80	09:40 AM	L0.003	0.017	0.007	L0.002
AB05BH0350	WEST 24	08/13/80	07:30 AM	L0.003	0.003	0.007	0.004
AB05BH0350	WEST 24	08/20/80	07:25 AM	0.1	0.1	0.1	0.1
AB05BH0350	WEST 24	08/20/80	09:15 AM	L0.003	0.006	0.3	0.005
AB05BH0350	WEST 24	08/20/80	07:25 PM	L0.003	0.002	0.011	0.004
AB05BH0350	WEST 24	08/27/80	07:30 AM	L0.003	0.002	0.004	0.007
AB05BH0350	WEST 24	09/03/80	09:30 AM	L0.003	0.002	0.002	L0.002
AB05BH0350	WEST 24	09/10/80	12:00 PM	L0.003	0.015	0.009	L0.002
AB05BH0350	WEST 24	09/17/80	08:45 AM	L0.003	0.002	0.004	0.004
			07:30 AM			0.065	
AB05BH0350	WEST 24	09/24/80		L0.003	L0.001		L0.002
AB05BH0360	WEST US N	04/09/80	12:00 PM	0.004	0.009	0.025	L0.003
AB05BH0360	WEST US N	04/16/80	12:45 PM	0.004	0.001	0.003	0.002
AB05BH0360	WEST US N	04/22/80	10:30 AM	0.003	0.001	0.002	0.003
AB05BH0360	WEST US N	04/30/80	10:00 AM	0.003	0.001	0.003	0.008
AB05BH0360	WEST US N	05/06/80	10:10 AM	L0.003		0.004	0.002
					0.002		
AB05BH0360	WEST US N	05/14/80	09:30 AM	L0.003	L0.001	0.001	0.003
AB05BH0360	WEST US N	05/21/80	09:30 AM	L0.003	0.015	0.014	L0.002
AB05BH0360	WEST US N	05/23/80	02:30 PM	L0.003	0.012	0.031	0.035
AB05BH0360	WEST US N	05/28/80	10:35 AM	L0.003	0.025	0.023	1.8
AB05BH0360	WEST US N	06/04/80	10:45 AM	L0.003	0.003	0.011	L0.002
AB05BH0360	WEST US N	06/11/80	11:00 AM	L0.003	0.002	0.003	L0.002
AB05BH0360	WEST US N	06/11/80	11:40 AM	L0.003	0.021	0.024	0.039
AB05BH0360	WEST US N	06/11/80	12:00 PM	L0.003	0.003	0.013	0.044
AB05BH0360	WEST US N	06/11/80	12:30 PM	L0.003	0.005	0.017	0.036
AB05BH0360	WEST US N	06/11/80	01:00 PM	L0.003	0.002	0.003	L0.002
AB05BH0360	WEST US N	06/11/80	02:10 PM	L0.003	0.007	0.028	0.026
AB05BH0360	WEST US N	06/11/80	02:40 PM	L0.003	0.01	0.028	0.041
AB05BH0360	WEST US N	06/18/80	11:30 AM	L0.003	0.001	0.002	L0.002
AB05BH0360	WEST US N	06/22/80	08:30 PM	L0.003	0.004	0.023	L0.002
AB05BH0360	WEST US N	06/25/80	11:10 AM	0.005	0.002	0.084	0.006
AB05BH0360	WEST US N	06/26/80	12:00 PM	0.003	0.022	0.045	0.011
AB05BH0360	WEST US N	07/02/80	10:40 AM	0.004	0.009	0.018	L0.002
AB05BH0360	WEST US N	07/09/80	10:50 AM	L0.003	0.007	0.012	L0.002
AB05BH0360	WEST US N	07/16/80	10:05 AM	0.003	0.003	0.018	L0.002
AB05BH0360	WEST US N	07/23/80	10:30 AM	L0.003	0.001	0.004	0.001
	WEST US N						
AB05BH0360		07/30/80	08:15 AM	0.004	0.034	0.071	0.014
AB05BH0360	WEST US N	07/30/80	10:30 AM	0.003	0.034	0.071	0.018
AB05BH0360	WEST US N	08/06/80	10:25 AM	L0.003	0.02	0.014	L0.002
AB05BH0360	WEST US N	08/10/80	07:30 AM	L0.003	0.004	0.01	0.006
AB05BH0360	WEST US N	08/10/80	08:30 AM	L0.003	0.005	0.007	0.002
AB05BH0360	WEST US N	08/10/80	09:30 AM	L0.003			
					0.006	0.011	L0.002
AB05BH0360	WEST US N	08/10/80	10:30 AM	L0.003	0.012	0.024	0.007
AB05BH0360	WEST US N	08/11/80	10:30 AM			0.1	
AB05BH0360	WEST US N	08/13/80	09:50 AM	L0.003	0.008	0.012	0.002
AB05BH0360	WEST US N	08/20/80	09:45 AM	L0.003	0.005	0.078	0.006
AB05BH0360	WEST US N	08/27/80	09:45 AM	L0.003	0.01	0.033	0.012
AB05BH0360	WEST US N						
		09/10/80	12:00 PM	L0.003	0.012	0.027	0.003
AB05BH0360	WEST US N	09/17/80	08:30 AM	0.007	0.002	0.023	L0.002
AB05BH0360	WEST US N	09/24/80	08:30 AM	L0.003	0.009	0.04	0.024
AB05BH0370	MOUTH	04/09/80	10:15 AM	0.008	0.015	0.025	L0.003
AB05BH0370	MOUTH	04/16/80	12:15 PM	0.005	0.002	0.008	0.003
AB05BH0370	MOUTH	04/22/80	09:45 AM	0.006	0.004	0.008	0.005
AB05BH0370	MOUTH	04/30/80	12:00 PM	0.003	0.004	0.008	0.01
AB05BH0370	MOUTH	05/06/80	09:00 AM	L0.003	0.004	0.008	0.01
AB05BH0370	MOUTH	05/14/80	09:05 AM	L0.003	0.002	0.004	0.008
AB05BH0370	MOUTH	05/21/80	09:00 AM	L0.003	0.003	0.005	0.006
AB05BH0370	MOUTH	05/23/80	01:45 PM	L0.003	0.01	0.043	0.075
AB05BH0370	MOUTH	05/28/80	11:15 AM				
				0.006	0.021	0.032	0.63
AB05BH0370	MOUTH	06/01/80	03:30 AM				0.68
AB05BH0370	MOUTH	06/01/80	04:50 AM				0.19
AB05BH0370	MOUTH	06/01/80	03:30 PM	0.006	0.01	0.052	0.68
AB05BH0370	MOUTH	06/01/80	03:45 PM	0.008	0.007	0.018	0.44
			-			A 1	

er 1

AB05BH0370	MOUTH	06/01/80	04:00 PM	0.009	0.009	0.035	0.028
AB05BH0370	MOUTH	06/01/80	04:25 PM	0.1	0.009	0.037	0.38
AB05BH0370	MOUTH	06/01/80	04:50 PM	L0.003	0.017	0.11	0.19
AB05BH0370	MOUTH	06/01/80	05:25 PM	L0.003	0.032	0.12	0.67
AB05BH0370	MOUTH	06/04/80	11:15 AM	L0.003	0.008	0.04	0.036
AB05BH0370	MOUTH	06/11/80	11:00 AM	L0.003	0.002	0.003	L0.002
AB05BH0370	MOUTH	06/11/80	12:30 PM	L0.003	0.004	0.01	0.015
AB05BH0370	MOUTH	06/11/80	01:00 PM	L0.003	0.004	0.013	0.018
AB05BH0370	MOUTH	06/11/80	01:30 PM	L0.003	0.004	0.011	0.018
AB05BH0370	MOUTH	06/14/80	04:15 PM	L0.003	0.004	0.015	0.016
AB05BH0370	MOUTH	06/14/80	06:00 PM	L0.003	0.003	0.005	0.014
AB05BH0370	MOUTH	06/14/80	06:30 PM	L0.003	0.003	0.012	0.016
AB05BH0370	MOUTH	06/14/80	07:00 PM	L0.003	0.002	0.007	0.016
AB05BH0370		06/14/80	07:30 PM	L0.003	0.002	0.009	0.05
	MOUTH						
AB05BH0370	MOUTH	06/14/80	08:00 PM	L0.003	0.002	0.006	0.02
AB05BH0370	MOUTH	06/14/80	08:30 PM	L0.003	0.003	0.009	0.016
AB05BH0370	MOUTH	06/18/80	07:30 AM	L0.003	0.003	0.021	0.01
AB05BH0370	MOUTH	06/19/80	11:30 AM	0.006	0.002	0.001	L0.002
AB05BH0370	MOUTH	06/22/80	05:45 PM	L0.003	0.005	0.022	0.008
AB05BH0370	MOUTH	06/22/80	06:30 PM	L0.003	0.005	0.025	0.014
AB05BH0370	MOUTH	06/22/80	07:00 PM	L0.003	0.005	0.026	0.013
AB05BH0370	MOUTH	06/22/80	07:30 PM	L0.003	0.006	0.044	0.016
AB05BH0370	MOUTH	06/22/80	08:00 PM	L0.003	0.005	0.045	0.012
AB05BH0370	MOUTH	06/22/80	08:30 PM	L0.003	0.005	0.018	0.011
AB05BH0370	MOUTH	06/22/80	09:00 PM	L0.003	0.005	0.023	0.017
AB05BH0370	MOUTH	06/25/80	07:40 AM	0.008	0.005	0.015	0.004
AB05BH0370	MOUTH	06/26/80	02:00 PM	0.005	0.029	0.081	0.056
AB05BH0370	MOUTH	07/02/80	07:35 AM	0.007	0.002	0.068	L0.002
AB05BH0370	MOUTH	07/09/80	07:30 AM	L0.003	0.004	0.041	0.014
AB05BH0370	MOUTH	07/16/80	07:15 AM	0.003	0.006	0.021	0.014
AB05BH0370	MOUTH	07/23/80	07:30 AM	0.005	0.006	0.043	0.015
AB05BH0370	MOUTH	07/29/80	08:30 AM	L0.003	0.01	0.091	0.028
AB05BH0370	MOUTH	07/29/80	09:00 AM	0.003	0.016	0.045	0.025
AB05BH0370	MOUTH	07/29/80	09:30 AM	L0.003	0.016	0.07	0.079
AB05BH0370	MOUTH	07/29/80	10:00 AM	L0.003	0.028	0.1	0.17
AB05BH0370	MOUTH	07/29/80	10:30 AM	L0.003	0.029	0.14	0.26
AB05BH0370	MOUTH	07/29/80	11:00 AM	0.003	0.029	0.11	0.11
AB05BH0370	MOUTH	07/29/80	11:30 AM	0.003	0.029	0.087	0.08
AB05BH0370	MOUTH	07/29/80	12:00 PM	1	1	0.8	1
AB05BH0370	MOUTH	07/30/80	07:15 AM	0.004	0.011	0.051	0.059
AB05BH0370	MOUTH	08/06/80	07:00 AM	L0.003	0.004	0.02	0.016
AB05BH0370	MOUTH	08/10/80	08:30 AM	0.003	0.003	0.006	0.004
AB05BH0370	MOUTH	08/10/80	09:30 AM	L0.003	0.009	0.014	0.009
AB05BH0370	MOUTH	08/10/80	10:30 AM	0.003	0.008	0.024	0.019
AB05BH0370	MOUTH	08/10/80	11:30 AM	0.003	0.007	0.017	0.016
AB05BH0370	MOUTH	08/13/80	12:00 PM	L0.003	0.014	0.017	0.01
	MOUTH						
AB05BH0370		08/20/80	10:20 AM	0.004	0.016	0.038	0.012
AB05BH0370	MOUTH	08/20/80	03:45 PM	0.003	0.015	0.025	0.28
AB05BH0370	MOUTH	08/20/80	04:15 PM	0.004	0.015	0.035	0.029
AB05BH0370	MOUTH	08/20/80	04:45 PM	L0.003	0.011	0.017	0.024
AB05BH0370	MOUTH	08/20/80	05:15 PM	0.003	0.01	0.019	0.01
AB05BH0370	MOUTH	08/20/80	05:45 PM	0.003	0.011	0.022	0.012
AB05BH0370	MOUTH	08/20/80	06:15 PM	0.004	0.011	0.025	0.019
AB05BH0370	MOUTH	08/27/80	10:00 AM	0.003	0.004	0.01	0.012
AB05BH0370	MOUTH	09/03/80	08:00 AM	L0.003	0.007	0.017	0.017
AB05BH0370	MOUTH	09/10/80					
			12:00 PM	L0.003	0.005	0.002	L0.002
AB05BH0370	MOUTH	09/17/80	07:00 AM	0.003	0.003	0.013	0.013
AB05BH0370	MOUTH	09/24/80	09:15 AM	L0.003	0.001	0.008	0.007
AB05BH0390	MOUTH	08/17/82	10:10 AM		0.004	0.008	0.008
AB05BH0370	MOUTH	04/23/85	02:30 PM	0.001	0.003	0.02	0.02
AB05BH0370	MOUTH	07/15/85	02:35 PM	L0.001	0.004	0.02	0.013
AB05BH0370	MOUTH	10/08/85	09:00 AM	0.001	L0.001	0.01	0.005
AB05BH0370	MOUTH	07/21/93	11:15 AM	L0.002	0.004	0.031	0.009
AB05BH0370	MOUTH	08/15/93	01:40 PM		2.004	0.028	
AB05BH0370	MOUTH	08/15/93	03:40 PM			0.022	
AB05BH0370	MOUTH	08/15/93				0.022	
			05:40 PM				
AB05BH0370	MOUTH	08/15/93	07:40 PM			0.02	
AB05BH0370	MOUTH	08/15/93	09:40 PM			0.052	
AB05BH0370	MOUTH	08/15/93	11:40 PM			0.058	
AB05BH0370	MOUTH	08/16/93	01:40 AM			0.061	
AB05BH0370	MOUTH	08/16/93	03:40 AM			0.059	
AB05BH0370	MOUTH	08/16/93	05:40 AM			0.04	
AB05BH0370	MOUTH	08/16/93	07:40 AM			0.03	
AB05BH0370	MOUTH	08/16/93	09:00 AM			0.03	
AB05BH0370	MOUTH	08/17/93	11:30 AM	0.025	0.012	0.022	0.002
AB05BH0370	MOUTH	09/13/93	09:15 AM				
				0.01	0.007	0.023	L0.002
AB05BH0370	MOUTH	09/13/93	09:20 AM	L0.002	0.007	0.02	0.002
AB05BH0370	MOUTH	11/17/93	01:50 PM	0.002	0.006	0.015	L0.002
AB05BH0370	MOUTH	01/25/94	09:00 AM	L0.002	0.005	0.02	L0.002
AB05BH0370	MOUTH	03/22/94	09:00 AM	0.003	0.003	0.016	L0.002
AB05BH0370	MOUTH	08/10/95	11:58 AM	0.003	0.007	0.014	L0.002
AB05BH0370	MOUTH	08/10/95	12:00 PM	0.003	0.005	0.014	0.007
AB05BH0370	MOUTH	02/28/96	08:42 AM	0.008	0.007	0.035	0.0026
AB05BH0370	MOUTH	02/28/96	08:47 AM	0.006	0.008	0.033	0.0023
						A 1	

19 J


STN NO	STN NAME	DATE	TIME	ECOLI		COLOUR	0.0	TD	-	0.0	NOO
AB05BH0390	MOUTH	04/24/75	10:00 AM	ECOLI	10	COLOUR	O&G	TR	F	OP	NO2
AB05BH0310	DS AIRDRIE	09/24/80	07:05 AM		10		2	450	0.78		L0.1
AB05BH0320	NOSE 564	06/18/80	10:00 AM				1				
AB05BH0320	NOSE 564	09/24/80	08:00 AM				1				
AB05BH0350	WEST 24	09/24/80	05:50 PM				1				
AB05BH0350	WEST 24 WEST 24	09/24/80					2				
AB05BH0360	WEST US NOSE	09/24/80	07:30 AM				0				
AB05BH0370		09/24/80	08:30 AM				1				
AB05BH0370	MOUTH MOUTH	06/14/80	04:15 PM				1				
AB05BH0370			06:00 PM				4				
AB05BH0370	MOUTH MOUTH	06/14/80	06:30 PM				4				
AB05BH0370		06/14/80	07:30 PM				34				
AB05BH0370	MOUTH	06/14/80	08:00 PM				29				
AB05BH0370	MOUTH	06/14/80	08:30 PM				323				
AB05BH0370	MOUTH	06/19/80	11:10 PM				2				
	MOUTH	06/22/80	05:45 PM				2				
AB05BH0370	MOUTH	06/22/80	06:30 PM				3				
AB05BH0370	MOUTH	06/22/80	07:00 PM				4				
AB05BH0370	MOUTH	09/24/80	09:15 AM				L1				
AB05BH0390	MOUTH	08/17/82	10:10 AM						0.25	0.03	
AB05BH0370	MOUTH	07/21/93	11:15 AM			20					
AB05BH0370	MOUTH	08/17/93	11:30 AM			30					
AB05BH0370	MOUTH	09/13/93	09:15 AM			20					
AB05BH0370	MOUTH	09/13/93	09:20 AM			20					
AB05BH0370	MOUTH	11/17/93	01:50 PM			20					
AB05BH0370	MOUTH	01/25/94	09:00 AM			10					
AB05BH0370	MOUTH	03/22/94	09:00 AM			50					
AB05BH0370	MOUTH	08/22/94	11:45 AM	1700							
AB05BH0340	WEST 722	03/30/95	02:00 PM			24					
AB05BH0340	WEST 722	04/05/95	11:30 AM			28					
AB05BH0340	WEST 722	04/13/95	10:30 AM			21					
AB05BH0340	WEST 722	04/18/95	01:30 PM			17					
AB05BH0340	WEST 722	04/26/95	12:00 PM			24					
AB05BH0340	WEST 722	06/06/95	03:15 PM			63					
AB05BH0340	WEST 722	06/20/95	09:45 AM			72					
AB05BH0340	WEST 722	07/19/95	01:45 PM			71					
AB05BH0340	WEST 722	08/10/95	09:25 AM			44					
AB05BH0370	MOUTH	08/10/95	11:58 AM	109				620	0.26		0.053
AB05BH0370	MOUTH	08/10/95	12:00 PM					622	0.26		0.053
AB05BH0370	MOUTH	02/28/96	08:42 AM	490							
AB05BH0250	SEWER 27	06/01/80	03:15 PM				2				
AB05BH0250	SEWER 27	06/01/80	04:00 PM				11				
AB05BH0250	SEWER 27	06/01/80	05:00 PM				2				
AB05BH0250	SEWER 27	06/14/80	04:00 PM				5				
AB05BH0250	SEWER 27	06/14/80	04:15 PM				2				
AB05BH0250	SEWER 27	06/14/80	04:30 PM				3				
AB05BH0250	SEWER 27	06/14/80	06:00 PM				1				
AB05BH0250	SEWER 27	06/22/80	05:00 PM				13				
AB05BH0250	SEWER 27	06/22/80	05:15 PM				5				
AB05BH0250	SEWER 27	06/22/80	05:30 PM				41				
AB05BH0260	SEWER 13	06/19/80	09:30 PM				10				

14.1

	NOSE CRI		TYLIMITS																				
	Date	Temp.	TSS	pН	Cond.	P. Alk.	T. Alk.	BOD	D.O.	Total P	Na	к	Ca	Mg	NH3-N	С	NO3	S04			ecal Strep	E.Coll.	Ratio
	yy/mm/dd	deg. C	mg/l	Units	us/cm		g CaCO3/	mgA	mg/l	mgA	mg/l	mg/l	mg/l	mgA 42.74	mg/i ⊲0.5	mg/i	mg/l	mg/l	#/100ml TNTC	#/100ml 2400	#/100mi 850	1700	2.82
	95/06/07 95/06/21	12.5 14.5	8.8 8.2	8.48 8.38	1403 1200	5.1	352.9 377.1	4.3 3.4	6.58 4.96	0.31 0.38	189.2 N.R.	8.66 N.R.	60.25 N.R.	43.78 N.R.	<0.5 N.R.	75.78 63.26	<1.25 <1	<1.25 239.8	TNTC	TNTC	TNTC	TNTC	TNTC
	95/07/05	12.5	10.5	7.98	727	õ	222.1	1	3.91	0.4	105.1	7.06	30.8	21.8	<0.5	51.6	<1	108.9	4700	3200	1700	300	1.88
	95/07/19	18	6.6	8.14	982	0	351.8	1	5.57	0.48	132.6	9.35	50	37.6	<0.5	51.4	<1	172	2900	1300	300	700	4.33
	95/08/02	16	5.8	8.7	959	13.1	351.1	2	5.47	0.29	151	7.59	47.42	36.7	<0.5	60.8	<1	146.4	200 550	100 30	10 30	200 400	10 0
	95/08/16 95/08/30	14 13.2	3 5.5	8.85 8.71	943 950	15.5 9.6	324.1 272.4	1.1 1.4	6.34 NR	0.14 0.24	114.4 146.8	7.03 7.42	38 46.3	32.5 31.4	<0.5 <0.5	43.3 63.9	<1 <1	128.3 141.1	2000	1900	400	1100	4.8
	95/09/13	16.5	29.5	8.57	712	5.6 7.9	232.9	2	6.64	0.24	93.6	6.96	34.4	23.3	<0.5	32.9	<1	87.4	3900	3300	120	1200	27.5
	95/09/27	9	7	8.8	1130	11.2	350.1	1.6	6.05	0.06	177.9	10.82	54.02	45.6	<0.5	52.93	<1	216.9	400	100	40	100	2.5
	95/10/11	5.8	1	8.44	1150	10.3	346.8	1.5	6.85	0.03	166.6	9.82	52	41.96	<.05	39.46	<1	146.3	20	16	8	0	2
	95/10/25	1	17.8	8.7	1030	10.4	359.6	2.9	10.55	0.06	187.1	11.05	58.75 90.9	51 74.7	<.05 <.05	56.78	<1 N P	223.6 N.R.	N.S. 195	N.S. 158	N.S. 20	N.S. 100	N.S. 7.9
	95/11/08 95/11/22	1	83 5	8.42 8.07	1570 1025	0	585.3 415.0	5.7 2.8	7.05 7	0.22 0.18	233.2 222.1	15.7 15.3	81.3	59.2	<.05	N.R. 158.8	N.R. 0.17	214.82	200	90	40	100	2.2
	95/12/06	i	8.2	7.92	1980	ŏ	688.0	1.9	5.11	0.38	265.4	18.2	108.6	76.9	<0.5	150.9	0.3	296.4	160	64	40	100	0.02
	96/02/28	-0.5	11	7.65	1240	0.00	390.6	27.1	N.R.	1.79	137.1	90.7	73.9	36.5	0.8	98.7	1.4	129.3	1200	100	80	0	1.2
	96/03/13	3.2	12.5	7.45	217	0.00	85.0	>24	8.75	1.46	17.7	31.1	21.6	8.4	0.8	12.0	0.7	16.2	410	220	300	0	0.73
	96/04/10	9	66.5	7.9	353	0.00	133.2	5	7.37	0.57	NR	NR	NR 44.2	NR 28.0	NR ND	11.0 17.7	0.7 <1.0	24.9 41.2	20 80	20 0	30 0	ő	0.66 0
	96/04/24 96/05/22	8.9 12	8 54	8.26 8.34	563 1230	0.00 12.8	270.5 451.2	3.5 4.6	8.42 5.20	0.32 0.69	62.9 173.3	14.4 12.5	68.3	47.4	ND	37.0	N.D.	186.4	6900	525	860	500	0.61
	96/05/28	12.2	29.5	8.41	1120	7.9	500.2	4	7.22	0.71	169.2	12.9	71.9	51.8	ND	58.0	N.D.	171.2	910	830	1100	900	0.83
	96/06/19	12.8	13	8.61	1250	11.9	436.9	4.8	6.35	0.71	193.7	12.0	74.7	56.8	<.5	45.9	ND	313.7	8500	2187	1540	5500	1.42
	96/07/03	19	47	8.47	1210	8.5	469.0	3.7	5.35	0.77	158.9	10.7	58.0	50.1	ND	36.6	ND	140.6	2800	1690	215	1400	7.9
	96/07/17	18	16.5	8.9	1140	29	428.0	2.3	4.85	0.75	156.3	10.4	62.7	52.6 26.5	ND ND	39.0 32.0	ND ND	198.3 99.1	740 640	475 125	270 510	400 0	1.76 0.25
	96/07/31 96/08/14	17 16	13.8 16.6	9.06 9.18	697 812	21 22	279.0 258.0	1.2 3.7	6.15 3.45	0.65 0.57	92.0 109.1	6.1 7.8	35.2 34.2	26.5	ND	35.2	ND	102.3	5100	4000	240	1400	16.7
	96/08/28	16	19.6	9.49	635	38.6	210.6	3.8	4.85	0.34	84.9	5.4	30.6	20.8	ND	40.1	0.8	122.6	3910	110	130	600	0.85
	96/09/11	10	65	9.36	946	40	251.0	5.1	4.93	0.35	107.6	5.9	20.5	17.1	ND	35.6	ND	110.2	2794	47	630	0.07	
	96/09/25	6.5	12.8	8.44	548	8	180.0	2.3	9.50	0.1	75.9	4.6	26.3	15.9	ND	39.7	<.5	95.3	2400	41	89 27	0	0.46 0.96
	96/10/09 96/10/23	6.5	3.4	8.76	767	13	248.0	2.3	8.22 7.70	0.01 0.12	96.3 170.0	7.8 12.5	43.3 78.9	26.9 52.5	ND ND	66.4 99.2	<0.2 <0.2	145.9 230.4	190 193	26 40	67	100	0.50
	96/11/06	1	10.6 13.8	8.5 8.41	869 974	20 5	380.0 413.5	2.6 2.1	NR	0.12	165.7	12.5	70.9	48.5	ND	19.6	0.3	25.1	420	176	82	100	2.2
	96/12/04	1	14	7.91	1690	ŏ	546.0	3.6	6.00	0.12	339.1	17.4	118.5	83.6	0.7	258.0	<1	333.6	64	13	15	0	0.87
	96/12/18	0	18.4	7.97	1610	0	594.0	3.2	7.40	0.13	329.8	14.9	113.8	80.6	0.7	206.1	<1	421.3	259	9	8	0	1.12
	97/01/15	-0.5	266	7.65	1910	0	814.1	7.5	1.35	1.14	406.2	16.3	140.6	100	1.2	263.6	4	531.3	60	0	0 30	10	0.0
	97/01/29 97/02/26	1.4 0	15 25	8.25 8.15	1240 1670	0	404 351.1	<1.6 12.7	9.60 4.55	0.07 0.68	93.5 254.9	4.6 17.3	93 63.1	56.8 42.7	N.D. 0.6	46.5 234.9	2 <1.0	227.2 231.4	1100 1150	351 416	300	200 400	11.7 1.4
≥	97/03/12	1	10	7.64	1831	ŏ	301	3.2	1.91	0.12	299.4	13.1	63.6	32.8	<.5	424.8	N.D.	164.7	20	0	10	0	0.0
	97/03/25	i	118	7.87	200	ō	98	8.4	9.00	0.68	16.2	11.4	17	7	0.2	8.2	0.4	13.7	228	172	66	0	2.6
່ທ	97/04/23	7.5	9.2	8.42	647	2.3	244.2	1.3	9.10	0.19	20.8	ND	3.4	ND	N.D.	37.5	N.D.	N.D.	11	6	13	0	0.5
	97/05/07	9	9.3	8.57	918	17	391.5	1.8	8.60	0.17	114.2	8.7	66.3	42.2	N.D.	21.3	N.D.	127.1	232	98 227	16 157	100 100	6.1 1.5
	97/05/21 97/06/04	4.2 18	14 5.5	8.51 8.42	822 952	7.0 7.0	309 380	3.6 2.2	9.65 5.45	0.72 0.25	35.0 98.7	2.8 10.4	18.1 59.6	13.2 43	N.D. N.D.	4.7 23.6	N.D. N.D.	14.6 114.5	440 330	237 118	30	200	3.9
	97/06/18	16.6	1.5	8.35	1060	8	425.1	2.6	6.00	0.40	117.1	9.8	60.7	44.4	ND	58.2	<1.0	234.1	1100	205	49	0	4.2
	97/07/02	15.5	11.5	8.6	914	14.1	376	2.4	8.50	0.15	89.1	151.6	28.5	11.8	ND	31.9	<1.0	94.1	850	420	124	700	3.4
	97/07/08	18	16.4	8.63	1030	13.8	436.8	2.7	5.55	0.22	127.9	8.8	60.9	48.4	ND	26.9	<1.0	88.5	480	233	85	200	2.7
	97/07/22	20.5	23	8.78	1170	23.8	467.1	3.9	ND	0.28	137.5	8.8	47.6	47.7	ND	33.4 45.8	ND ND	113.8 135.7	5000 1200	550 480	98 11.1	600 800	5.6 4.3
	97/08/05 97/08/19	20.5 15.5	18 21	8.83 8.8	1190 592	22 19.6	418 177.2	3.0 4.1	5.62 8.03	0.24 0.21	161.3 68.3	8.4 4.6	42.2 29.8	47.7 17.1	ND ND	31.2	<0.2	81.6	4400	460	245	500	1.9
	97/09/02	15	11.5	8.79	1030	15	373	3.3	7.18	0.10	146.5	10.2	50.1	44.4	ND	37.6	<1.0	129.7	2200	170	36	200	4.7
	97/09/16	13	10.5	8.48	894	6	325.4	1.7	7.28	0.07	115.4	8.7	49.3	36.3	ND	34.5	<.5	119.7	2750	258	88	200	3.0
	97/09/30	10	12.2	8.53	980	8.8	355.7	2.0	7.30	0.06	133.2	10.4	43.3	56.8	ND	643.4	<0.5	108.6	900	88	20	200	4.4
	97/10/14	5	20.5	8.37	876	8	313	2.4	9.55	0.01	128.7	10.1	58.9 71	40.7 57	<1 ND	70.1 40.3	<0.5 <1.0	109.8 113.3	585 18	18 7	23 10	200 0	0.8 0.7
	97/11/12 97/11/25	1 0.7	13.5 11.5	8.55 8.36	1120 1270	14.1 1.3	541.3 632.9	3.4 2.8	12.22 8.54	0.08 0.06	149.0 215.1	10.1 13.3	90.2	73.3	ND	40.3 76	<1	199.1	30	4	4	ŏ	0.0
	97/12/09	0.6	109	7.99	2250	0	975	6.1	8.26	0.30	400.6	21.2	160.2	119.8	ND	139	<.5	464.5	16	0	8	0	0.0
	97/12/23	0	3581	7.75	2540	0	1344.5	16.8	5.00	2.31	436.7	18.1	153.9	119.7	ND	146.7	<1	537.6	30	90	0	0	0.0
	98/01/06	-180	570	7.62	2920	0	1441	18.0	2.00	0.40	580.7	21.9	211.6	161.9	ND	74.3 105.5	ND	133.3 441	5 36	3	2	0	mple from
Ň	98/02/17* 98/04/14	1.3 5.5	46 23.2	7.78 8.2	2780 610	0 0.0	1070 234.1	18.7 4.6	ND 10.20	0.47 0.27	440.0 67.5	15.2 12.4	124.4 47	79.3 27	ND 0.3	105.5	<1.0 0.3	441 83.5	168	14	28	ŏ	0.5
6	98/04/28	13	18.0	8.36	924	4.0	352	4.0	7.86	0.81	150.4	22	87.5	47.4	1	31.5	<0.15	120.7	76	8	15	õ	0.5
	98/05/12	13.7	11.5	8.62	1270	19.9	482.8	3.2	6.68	0.32	394.8	30.5	195.8	134.9	1	NR	NR	NR	77	14	7	0	20.0
×	98/05/26	12	17.2	8.8	1040	22.1	392.6	3.6	6.81	0.34	143.6	9	61.7	45.2	0.5	NR	NR	NR	303	82	125	100	0.7
AS	98/06/09	16	20.2	8.9	1090	26.0	417	2.1	7.51	0.18	134.7	8.8 8.7	57.5 51 3	43.6 35.2	ND 0.5	36.2 36.2	<.15 <0.3	141.4 151.4	1480 564	576 400	165 104	800 400	3.5 3.9
ř	98/06/23 98/07/07	17.4 20	9.0 11	8.29 7.92	1020 794	6.0 0	359.5 283	2.2 2.8	6.00 4.30	0.26 0.55	135.9 99.6	8.7 9.7	51.3 39.6	23.9	ND	20.5	<0.3	103.3	750	380	220	400	1.7
P	98/07/21	19	8.2	8.12	777	ŏ	346.8	2.0	5.10	0.46	77.9	9.4	50.2	32	0.27	22.3	0.2	78.6	1080	245	125	300	2.0
2	98/08/04	20.2	11.6	8.46	928	9.5	421.6	2.7	6.20	0.50	110.5	11.6	64.3	42	ND	32	0.07	131.9	1340	202	60	600	3.4
ž	98/08/18	16.7	42	8.88	285	29.3	487.3	7.4	9.33	0.24	189.3	12.7	76.2	59.2	ND	45.2	<.03	347.2	2450	255	129	700	2.0
ISI	98/09/01	17 NEW MET	16.6 HOD FOR I	8.75	1040	8.5 See alfactor	410	2.0 Historiant	7.17	0.24	163.1	9.8	52.7	44.6	ND	39.8	<0.3	215.5	2800	144	51		2.8
CONSULTING	98/09/15	12.1	15.5	8.28	1350	See attachm 9.0	403.0	2.6	8.13	0.17	218.7	11.4	53.8	52.9	ND	57.2	ND	337.7	3600	20	101	200	0.2
Ξ	98/09/29	10.5	21	8.74	1180	14	390	3.6	6.56	0.13	166.1	9.7	45.8	43.6	ND	36.8	ND	242.4	880	11	12	0	0.9
Z	98/10/27	5.9	21.5	8.79	980	16.1	329	8.5	9.18	0.09	156.2	10	47.1	44.2	ND	23.3	<.06	224.5	170	6	24	0	0.3
ଦ	98/11/10	0	22.5	8.38	1020	5	374	2.8	8.48	0.38	153.1	13.9	78.2	54.1	0.6	122.8	0.3	257.9	260	56	112	0	0.5
	98/11/24 98/12/08	0	14.8 19.8	8.31 7.88	1350 N.R.	0	509 687.8	2.5	8.60 N.R.	0.14 0.14	212.6 257.4	16.2 17.1	100.7 113	70.9 81.2	0.7 1.2	122.9 138	0.3 0.4	316 401.7	110 490	30 120	4 270	0 300	1.5 0.44
	98/12/22	ŏ	118	7.68	3390	0	1447	2.4 5.5	5.16	0.02	671.0	39.9	139.4	211.5	4	358.6	0.4	1091.6	740	32	15	100	2.1
						-								-									

a -

	Date	Cr	Cu	Zn	Pb	AI	Cđ	Fe	Ni	Ag	As	в	Ba	Be	Co	Hg	Mn	Mo	Sb	Se	Sn	Sr	Ti	U	v
	yy/mm/dd	mg/l	mg/i	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ррь	ppb	ppb
	95/06/07 95/06/21	0.017 <.003	0.006 0.718	0.012 0.038	<.03 <.03	<.165 0.2	0.003 0.001	0.357 0.494	<.01 0.03																
	95/07/05	0.035	0.013	0.021	<.03	0.3	<.001	0.863	0.048																
	95/07/19 95/08/02	0.046 0.004	0.013 <.002	<.002 <.002	<.03 <.03	<.16 <.16	<.001 <.001	0.256 0.121	0.015 0.055																
	95/08/16	<.003	0.009	0.019	0.13	0.7	<.001	0.161	<.01																
	95/08/30 95/09/13	0.004 0.006	0.006 0.01	0.006 0.017	<.03 0.06	<.16	0.003 <.001	0.181 1.419	<.01 0.019																
	95/09/27	0.006	<.002	0.017	<.03	<.165 0.3	0.001	0.216	0.027																
	95/10/11	0.007	0.034	0.013	<.03	<.165	0.005	0.162	<.01																
	95/10/25 95/11/08	<.003 <.003	0.005 0.016	0.048 0.008	<.03 <.03	<.16 2.3	<.001 0.005	0.377 2.037	0.017 0.055																
	95/11/22	<.003	0.019	0.027	0.06	<.16	0.009	0.42	0.126																
	95/12/06 96/02/28	0.023 <.003	0.027 0.063	0.015 0.038	0.03 0.03	0.5 <.16	0.003 0.012	0.658 0.722	0.058 0.03																
	96/03/13	<.003	0.003	0.043	<.03	0.5	0.001	0.743	0.032																
	96/04/10	<.003	0.011	0.02	0.05	1.3	0.008	1.871	0.058																
	96/04/24 96/05/22	0.028 <0.003	0.026 0.032	<.002 0.016	<.03 0.04	<.16 1.6	0.002 <0.001	0.54 1.898	0.063 0.017																
	96/05/28	0.035	0.011	<.002	<.03	0.7	0.004	1.023	<.01																
	96/06/19 96/07/03	0.003 <.003	0.025 0.006	<.002 <.002	0.05 <.03	0.4 1.5	0.016 0.003	0.531 1.89	0.128 0.035																
	96/07/17	<.003	<.002	0.103	<.03	<.16	0.007	0.633	<.009																
	96/07/31	<.003	0.035	0.233	<.03	0.5	0.002	0.585	0.03																
	96/08/14 96/08/28	<.003 <.003	<.002 <.002	0,154 0,126	0.13 0.05	0.2 0.6	0.005 0.009	0.687 0.678	<.009 0.047																
	96/09/11	<.003	0.008	0.322	<0.03	2.8	0.008	3.332	0.028																
	96/10/09 96/10/23	<.003 0.01	0.013 <.002	0.031 0.058	0.03 0.04	0.7 0.5	0.014 0.004	0.421 0.582	0.044 0.017																
	96/11/06	0.017	0.036	0.033	0.06	<.16	0.007	0.574	0.063																
	96/12/04 96/12/18	<.003 0.005	0.024 0.026	0.016 0.007	0.09 0.09	<.16 1	0.01 0.001	0.587 0.788	<.009 0.018																
	97/01/15	0.032	0.038	0.031	0.05	5.30	0.012	6.785	0.036																
	97/01/29	0.009	0.056	0.019	<.03	< 165	0.008	0.729	0.047																
	97/02/26 97/03/12	<.003 0.04	0.013 0.105	<.002 0.026	0.03 0.06	0.70 0.18	0.022 0.006	1.076 0.759	0.042 0.084																
2	97/03/25	0.009	0.040	0.044	0.03	1.60	0.008	2.544	0.091																
6	97/04/23	<.003 0.005	<.002 0.014	<.002 <.002	<.03 0.03	<.16 <.16	0.008 0.009	0.358 0.406	0.058 0.028																
	97/05/21	<.003	0.060	0.034	<.03	1.20	0.002	1.079	0.086																
	97/06/04 97/06/18	0.036 <.003	0.065 0.111	0.737 0.212	<.03 <.03	<.16	0.012 0.019	0.384 0.510	0.152 0.058																
	97/07/02	<.003	0.033	0.485	<0.03	<.16 <.16	0.013	0.513	0.059																
	97/07/08	< 0.033	0.047	0.265	0.03	0.20	0.01	0.515	0.061																
	97/07/22 97/08/05	<0.003 0.078	0.480 0.062	0.253 18.200	0.04 0.07	0.60 0.90	0.01 0.013	0.873 0.702	0.034 0.057																
	97/08/19	0.014	0.028	0.462	0.09	1.20	0.013	0.991	0.053																
	97/09/02 97/09/16	0.004 <.003	0.040 0.023	0.200 0.256	0.04 0.04	0.60 <.16	0.013 0.012	0.631 0.571	0.038 0.051																
	97/09/30	0.025	0.056	0.330	<.03	0.20	0.009	0.429	0.018																
	97/10/14 97/11/12	<.003 0.024	0.048 0.010	0.234 0.003	<.03 <.03	0.40 0.20	0.019 0.003	0.865 0.609	0.067 0.027																
	97/11/25	<.003	0.020	<.002	0.05	0.20	0.005	0.555	0.027																
	97/12/09	<.001	0.021	0.022	0.05	1.60	0.006	2.169	<.009																
	97/12/23 98/01/06	0.045 0.021	0.117 0.052	0.393 0.091	0.14 0.14	37.50 8.60	0.012 0.016	55.660 13.195	0.097 0.072																
X	98/02/17*	0.007	0.011	0.020	<.03	<.16	0.006	7.401	0.051																
MAD	98/04/14 98/04/28	<.003 <.003	0.010 0.023	0.019 0.021	<.03 0.03	0.60 <.16	<.001 0.002	0.994 0.721	<.009 0.009																
≥.	98/05/12	0.02	<.002	0.014	0.004	0.20	0.002	0.263	0.016																
WA	98/05/26 98/06/09	0.023 0.026	<.002 <.002	0.015 0.007	0.03 0.03	0.20 0.30	0.001 0.003	0.418 0.568	0.024 0.020																
ASK	98/06/23	0.006	<.002	0.029	<.03	1.00	0.004	0.553	0.015																
KA	98/07/07 98/07/21	0.01	0.005	0.021	0.03	<.16	0.003	0.740	<.01																
8	98/08/04	<.003 <.003	<.002 0.001	0.013 <.002	<.03 <03	<.16 <.16	0.003 <.002	0.354 0.265	0.016 <.010																
ONSULTING	98/08/18	0.12	<0.002	<0.002	<0.03	<.16	0.006	0.430	< 0.010																
ü	98/09/01	<.003 ppb	0.025 ppb	<.002 ppb	0.05 ppb	<.16 ppb	0.003 ppb	0.752 ppb	<.009 ppb	NEW	METHOD	ICPMS													
H	98/09/15	1.84	15.1	12.5	1.22	447	nd	646	8.07	0.088	0.8	131	162	nd	0.597	nd	39.8 26.6	6.65	0.821 0.621	4.4	0.154 0.085	529 502	5.07 5.36	4.77 5.52	4.21 3.59
N	98/09/29 98/10/27	2.08 1.42	11.4 8.64	10.4 12.1	1.87 0.439	545 555	nd nd	687 547	7.95 5.7	0.073 0.088	nd nd	130 57.4	148 149	nd nd	0.955 0.497	nd nd	36.6 24.7	5.64 5.55	0.559	8.9 118	0.065	423	4.68	5.01	2.94
41	98/11/10	2.94	11.8	16.7	1.1	844	0.101	948	7.32	0.217	1.27	129	176	nd	0.498	nd	35.8	5.9	0.408	30	0.185	520 731	7.57	6.52 8.12	3.57 2.74
	98/11/24 98/12/08	2.07 3.82	9.3 11.3	11.3 17.1	0.74 1.01	461 1071	0.136 0.295	764 1206	6.25 2.56	nd 0.122	2.44 2.87	177 148	206 267	nd nd	0.374 0.422	nd 0.036	27.8 60.8	6.9 9.09	0.509 0.609	29.1 28.8	nd 0.557	731 1041	4.46 8.15	11.2	4.45
	98/12/22	10.6	19.8	2.54	2.43	2028	0.373	2561	12.30	0.585	0.091	327	526	nd	1.3	nd	207	14.6	0.855	88.6	0.408	2003	18.7	20.9	6.9

A17

	3801 - 21st STREET N.E. CALGARY, AL TEL: (403) 299-2000 FA	BERTA T2E 6T5 X: (403) 299-2010	ATTENTION: MIKE S		File Numbe Date Sampl Date Recei	ed : 98-09-25
			WATER ANALYSIS	Wot office have	Date Repor	ted: 98-10-08 Airdry (
	PARAMETER	LAB NUMBER-> SAMPLE ID ->	246126 CREEK WATER-MAIN ST.& NOSE CREEK & 2:40PM	246127 Jow d CREEK WATER-TAVER LANE & NOSE CREEK @2:00PM	246128 CREEK WATER-H NOSE CREEK @	
	Dissolved Oxygen Biochemical Oxygen Demand Total Organic Carbon Total Kjeldahl Nitrogen Nitrate	mg/L mg/L mg/L mg/L mg/L	14.9 7 25 2.46 6.2	17.3 5 16 1.79 1.0	15.7 12 18 2.16 1.4	
	Nitrite Oil & Grease	mg/L mg/L	<0.3 2.6	<0.3 98.2	<0.3 192	
A17	AGAT [®] Laborat		CITY OF AIRDRIE			
	3801 - 21st STREET N.E. CALGARY, A TEL: (403) 299-2000 F	LBERTA T2E 6T5 AX: (403) 299-2010	ATTENTION: MIKE	SHEPHERD	File Numb Date Samp	er : 31480.612 Led : 98-10-05
м			WATER ANALYSIS NOSE CREEK	Storm seurce	Date Samp Date Rece Date Report	ived: 98-10-05 rted: 98-10-14
MADAWASKA	PARAMETER	LAB NUMBER-> SAMPLE ID ->	246612 South of BIG H Springs RD.@ 2		LLS 00	
CONSULTING	Dissolved Oxygen Biochemical Oxygen Demand Total Organic Carbon Total Kjeldahl Nitrogen Nitrate	ng/L h ng/L ng/L ng/L ng/L ng/L	23.0 11 18 2.09 2.8	22.5 11 18 2.01 2.6		
	Nitrite Oil & Grease	mg/L mg/L	<0.3 <0.2	<0.3 <0.2		

÷

< VALUES REFER TO METHOD DETECTION LIMITS

Table 18

	1	From Ro	utine Cro	eek and St	orm Sewe	er Disch	arge Sam	oles		
Pesticide/-		Ma	y 6 .			May	May 23*			
Herbicides (mg/L)		Site 5	Site 6	Site 7	Site 3	Site 5	Site 6	Site 7	Site 5	Site 6
2,4 - D	< Q. <u>.</u> 001	0.81	0.19	<0.001	< 0.001	0.36	<0.001	<0.001	0.001	<0.001
Temephos	<0.001	<0.001	-<0.001	<0.00I	⊲0.001	<0.001	<0.001	<0:001	0.26	.30
Chlorpyrifos ALL SAMPLES - <0.001 mg/1.								L		

Summary of Concentrations of Herbicide and Pesticide Samples

* Storm Samples

Pesticide/		Storm Sewer N-27 Sampling dates										
Herbicide	May 8*	May 23	May 25	May 26	June 1	June 14	June 22	June 26	May 26			
2,4 -D	0.39	0.43	< 0.001	0.19	0.63	0.21	0.17	< 0.001	< 0.001			
Temephos		ALL SAMPLES < 0.001 mg/1.										
Chlorpyrifos	ALL SAMPLES < 0.001 mg/1.											

* Dry-weather samples

< Indicates values " less than "

MADAWASKA CONSULTING

A CONTRACTOR

Site of Ba	24 D.	24 DP.	Atrazine	Broinsoil	Blomowill	SCIOPYFall(d)	Diazinon	Dicamba	Dimethoates	SUMDANE	MGRAD	MCREF	Picloram.	Triallate
Nose Cr u/s	0.226	0.039	0.011		0.030						0.099	0.224	0.152	
Calgary														
Nose Cr @	0.143	0.012	0.033		0.032	0.017x	0.008	0.043		0.006	0.080	0.234	0.063	
Memorial								l						
WID@	0.031		0.004x		0.005		ĺ				0.014	0.021	0.009	
diversion										1	0.000	0.010		
IC-8	0.023		0.006	0.612	0.014		[0.005	0.006	0.012	0.010	
WID@61	0.036		0.005		0.005						0.014	0.030	0.010	
Ave											0.040	0.054	0.000	0.014
IC-17	0.164	0.015	0.045		0.039			0.014x	0.075	0.044	0.043	0.054	0.068	0.014
WID@	0.039		0.007					1			0.013	0.029	0.010	
Barlow														
IC-21	0.035				0.010						0.008	0.013		0.012
IC-21A	0.140	0.034			0.054			0.022			0.097	0.091	0.078	
IC-23	0.360	0.021	0.648		0.048		0.041	0.625			0.076	1.463	0.007	
WID @ 84 St.	0.140	0.005	0.101		0.010		0.006	0.084		0.006	0.029	0.204	0.012	
WID @ 132 St.	0.116		0.065		0.009			0.057		0.006	0.024	0.137	0.010	
Spike	0.143		0.044					0.120						
Sample*	(0.12) 119%		(0.10) 44%					(0.20) 60%						

Table 2. Results (ug/L) of pesticide sampling of WID canal, selected storm outfalls and Nose Creek, June 1998

0.005 0.005 0.030 0.005 0.020 0.005 0.020 0.050 0.005 0.005 0.005 0.005 Detection 0.005 0.005 Level

* Top number is lab reported value, number in brackets is spike design concentration, and bottom number is percent recovery. Blank spaces are non-detections.

.

x - below detection level

APPENDIX B

94 I

Water Quality Guidelines

PARAMETER	IRRIGATION	LIVESTOCK WATERING	DRINKING WATER	FRESHWATER AQUATIC LIFE
Aluminum (total)	5.0	5.0		0.005 - 0.1
Ammonia (total)				1.37 - 2.2
Arsenic (total)	0.1	0.5 - 5.0	0.025	0.05
Barium			1.0	
Beryllium	0.1	0.1		
Boron (total)	0.5 - 6.0	5.0	5.0	
Cadmium (total)	0.005	0.08	0.005	0.0001 - 0.0006
Calcium		1000		
Chloride (total)	100 - 700		250	
Chromium (total)	0.1	1.0	0.05	0.002 - 0.02
Cobalt (total)	0.05	1.0		
Conductivity (EC)	1.0 mS/cm			
Copper (total)	0.2 - 1.0	0.5 - 5.0	1.0	0.002 - 0.004
Fluoride (total)	1.0	1.0 - 2.0	1.5	
Iron (total)	5.0		0.3	0.3
Lead (total)	0.2	0.1	0.01	0.001 - 0.007
Manganese (total)	0.2		0.05	
Mercury (total)		0.003	0.001	0.0001
Molybdenum (total)	0.01 - 0.05	0.5		
Nickel (total)	0.2	1.0		0.025 - 0.15
Nitrate			45.0	avoid prolific weed growth
Nitrate + nitrite		100		
Nitrite		10.0	4.5	0.06
Oxygen, dissolved				5.0 - 9.5
pH			6.5 - 8.5	6.5 - 9.0

Table B1Selected Canadian Water Quality Guidelines(CCREM 1987 and updates)

PARAMETER	IRRIGATION	LIVESTOCK WATERING	DRINKING WATER	FRESHWATER AQUATIC LIFE
Selenium (total)	0.02 - 0.05	0.05	0.01	0.001
Silver (total)				0.0001
Sodium			200	
Sodium Adsorption Ratio (SAR)	3 - 9			
Sulphate		1000	500	
Total dissolved solids	500 - 3500	3000	500	
Vanadium (total)	0.1	0.1		
Zinc (total)	1.0 - 5.0	50.0	5.0	0.03
Coliforms, fecal	100/100 mL		0/100 mL	
Coliforms, total	1000/100 mL		10/100 mL	
2,4-D		100	100	4
Temephos			280	
Atrazine	10	60	5	2
Bromoxynil	0.35	11	5	5
МСРА	0.03 - 0.16	25	under review	2.6
Picloram		190	190	29
Diazinon			20	
Dicamba	0.006	122	120	10
Lindane		4	4	0.01

Table B1 (cont.) Selected Canadian Water Quality Guidelines

 $\Theta \leq 1$

Units are mg/L except for conductivity (mS/cm), pH (pH units), SAR (no units), coliform bacteria (#/100 mL), pesticides (μ g/L). 1 mg/L = 1000 μ g/L.

Table B2 Alberta Ambient Surface Water Quality Interim Guidelines

ENVIRONMENTAL PROTECTION AND ENHANCEMENT ACT

TABLE 1

ALBERTA AMBIENT SURFACE WATER QUALITY INTERIM GUIDELINES

These interim guidelines represent water quality suitable for most uses either through direct use or prepared for use by common water treatment practices. They apply to surface waters except in areas of close proximity to outfalls.

There are many instances where the natural water quality of a lake or river does not meet some of the suggested limits. In these cases, the guidelines will not apply. It should be noted, however, that where the natural existing quality is inferior to desirable guidelines, care must be taken in allowing any further deterioration of water quality. Naturally occurring circumstances are not taken into account in these guidelines and due consideration must be given where applicable (e.g. spring runoff effect on colour, odour, etc.).

Bacteriology (Coliform Group)

- (a) In waters to be withdrawn for treatment and distribution as a potable supply or used for outdoor recreation other than direct contact, at least 90 percent of the samples (not less than five samples in any consecutive 30 day period) should have a total coliform count of less than 5,000 organisms per 100 ml and a fecal coliform count of less than 1,000 organisms per 100 ml.
- (b) In waters used for direct contact recreation or vegetable crop irrigation the geometric mean of not less than five samples taken over not more than a 30day period should not exceed 1,000 organisms per 100 ml total coliforms, nor 200 organisms per 100 ml fecal coliforms, nor exceed these numbers in more than 20 percent of the samples examined during any month, nor exceed 2,400 organisms per 100 ml total coliforms on any day.

Dissolved Oxygen

A minimum of 5.0 mg. L^{-1} at any time.

<u>Note</u>: Dissolved oxygen continues to be a significant factor in the protection of aesthetics and in the maintenance of fish and other aquatic life in Alberta. Guideline information has shown that dissolved oxygen requirements vary from 5.0 mg.L⁻¹ to 9.5 mg.L⁻¹ according to the type of aquatic biota present, either cold water or warm water related, and life stages (egg, fry, adult).

Biochemical Oxygen Demand

Dependent on the assimilative capacity of the receiving water, the BOD must not exceed a limit which would create a dissolved oxygen content of less than 5.0 mg.L^{-1} .

Suspended Solids

Not to be increased by more than 10 $mg.L^{\cdot 1}$ over background value.

<u>рH</u>

To be in the range of 6.5 to 8.5 pH units but not altered by more than 0.5 pH units from background value.

Temperature

Not to be increased by more than 3°C above ambient water temperature.

ENVIRONMENTAL PROTECTION AND ENHANCEMENT ACT

Odour

The cold (20°C) threshold odour number not to exceed 8.

<u>Colour</u>

Not to be increased more than 30 colour units above natural value.

Turbidity

Not to exceed more than 25 Jackson turbidity units over natural turbidity.

17-----

Organic Chemicals

Constituent	Maximum Concentration (mg.L ⁻¹)
Carbon Chloroform Ex (CCE) (includes Carb	
Alcohol Extract)	0.2
Methyl Mercaptan	0.05
Methylene Blue Active	
Substances	0.5
Oil and Grease	substantially
	absent, no
	iridescent sheen
Phenolics	0.005
Resin Acids	0.1

Pesticides

To provide reasonably safe concentrations of these materials in receiving waters an application shall not exceed 1/100 of the 48-hour TI_m. No pesticides can be used in Alberta unless they have been registered under the Pest Control Products Act. Any pesticides used on, in, or near water must be approved under The Environmental Protection and Enhancement Act.

Radioactivity

Gross Beta not to exceed 37.0 Bq/L. Radium-226 not to exceed 0.11 Bq/L. Strontium-90 not to exceed 0.37 Bq/L.

Inorganic	Chemi	icals

	Maximum
	Concentration
<u>Constituent</u>	<u>(mg.L⁻¹)</u>
Arsenic	0.01
Barium	1.0
Boron	0.5
Cadmium	0.01
Chromium	0.05
Copper	0.02
Cyanide	0.01
Fluoride	1.5
Iron	0.3
Lead	0.05
Manganese	0.05
Mercury	0.0001
Nitrogen (Total Inorgan	nic
and Organic)	1.0
Phosphorous as PO,	
(Total Inorganic and	
Organic)	0.15'
Selenium	0.01
Silver	0.05
Sodium (as percent of	
Cations)	between
,	30 & 75
Sulphide	
Zinc	

Note: The predominant cations of Sodium, Calcium, and Magnesium and anions of Sulphate, Chloride and Bicarbonate are too variable in the natural water quality state to attempt to define limits. Nevertheless, in order to prevent impairment of water quality, where effluents containing these ions are discharged to a water body the permissible concentration will be determined by the regulatory authority in accordance with existing quality and use.

Unspecified Substances

Substances not specified in this table should not exceed values which are considered to be deleterious for the most critical use as established by the regulatory authority.

September 1, 1993

¹ Phosphorus concentrations are more typically expressed in terms of P rather than PO₄. As a results of the difference in molecular weights of PO₄ and P, the guideline maximum concentration used in this report is 0.05 mg/L.